Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." A replacement of compositions of operators in n-space by simpler product rules for thier symbols. The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. In this second edition the author has extended the scope and applicability of the calculus wit original contributions and perspectives developed in the years since the first edition. A main improvement is the inclusion of globally estimated symbols, allowing a treatment of operators on noncompact manifolds. Many proofs have been replaced by new and simpler arguments, giving better results and clearer insights. The applications to specific problems have been adapted to use these improved and more concrete techniques. Interest continues to increase among geometers and operator theory specialists in the Boutet de Movel calculus and its various generalizations. Thus the book s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators."
This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR, theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators, but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed. Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12), where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicate
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book's improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR, theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators, but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed. Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12), where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicate
|
You may like...
|