![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Although pancreatic cancer is one of the most serious forms of cancers, the outlook for patients could be improved. The lack of clinical symptoms of early, surgically removable disease most often limits curative treatment options. The aggressive tumor cell biology, leading to a locally advanced nature of the disease and to early metastases, allows curative resection in only 20% of patients at the time of diagnosis. Patients are therefore often faced with a dreadful prognosis from a state of almost full physical health. Furthermore, because there is a high recurrence rate after curative resection, treatment of this tumor entity becomes a great challenge. This book gives insight into the current understanding of the management of pancreatic cancer and considers recent findings in cancer research. It provides answers to questions of how to know when cancer is respectable, how to proceed when the diagnosis comes too late for a curative approach, and how to assess different study results. Moreover, it highlights new upcoming therapeutic options and experimental approaches, which might further improve the future prospects for patients with pancreatic adenocarcinoma.
This book covers lymphoproliferative disorders in patients with congenital or acquired immunodeficiencies. Acquired immunodeficiencies are caused by infections with the human immunodeficiency virus or arise following immunosuppressive therapy administered after organ transplantation or to treat connective tissue diseases such as rheumatoid arthritis. It was recently discovered that various diseases or therapeutic modalities that induce a state of immunosuppression may cause virally driven lymphoproliferations. This book summarizes for the first time this group of immunodeficiency-associated lymphoproliferations.
This book covers lymphoproliferative disorders in patients with congenital or acquired immunodeficiencies. Acquired immunodeficiencies are caused by infections with the human immunodeficiency virus or arise following immunosuppressive therapy administered after organ transplantation or to treat connective tissue diseases such as rheumatoid arthritis. It was recently discovered that various diseases or therapeutic modalities that induce a state of immunosuppression may cause virally driven lymphoproliferations. This book summarizes for the first time this group of immunodeficiency-associated lymphoproliferations.
Although pancreatic cancer is one of the most serious forms of cancers, the lack of clinical symptoms often limits curative treatment options. This book gives insight into the current understanding of the management of pancreatic cancer and considers recent findings in cancer research. It provides answers to questions of how to know when cancer is respectable, how to proceed when the diagnosis comes too late for a curative approach, and how to assess different study results.
Sind bestimmte Parameter der Verteilung einer Zufallsvaria- blen unbekannt, so bieten statistische SchHtzmethoden die M6glichkeit, diese Parameter aus Stichprobenergebnissen zu schHtzen. Unter Parametern versteht man dabei zumeist Mo- mente der Verteilung der betrachteten Zufallsvariablen. 1st das verteilungsgesetz bekannt, so bezeichnet man als Para- meter die in diesem Verteilungsgesetz auftretenden Konstan- ten. Die in diesem Kapitel darzustellenden Problem16sungen basie- ren auf Zufallsst1chproben als Auswahlverfahren fUr die Stichprobenelemente, wodurch die Anwendung der Ergebnisse des Kap1tels 8 erm6gl1cht w1rd. Das Vorgehen beim SchHtzen soll nun gesch1ldert werden. Es sei e ein unbekannter Parameter der Verte1lung der Zufalls- var1ablen. Die SchHtzung dieses Parameters w1rd mit Hilfe e1ner Stichprobenfunktion durchgefuhrt. Jede Stichproben- funktion, die zur SchHtzung eines unbekannten Parameters herangezogen werden kann, heiSt eine SchHtzfunktion fur die- sen Parameter. Sie wird mit 0 bezeichnet. Da 0 von den zu- fallsvariablen X ' --- 'X abhHngig ist, kann man ausfuhrli- 1 n cher schreiben: 0 = D(X, x, ---, X ) oder auch D (X, ---, X ), 1 2 n 1 n n wenn die AbhHngigkeit der SchHtzfunktion vom Stichprobenum- fang hervorgehoben werden soll. Eine AusprHgung d(x, x, --., 1 2 xn) dieser SchHtzfunktion, die-sich aus einer realisierten St1chprobe ergibt, w1rd als NHherungswert des unbekannten Parameters verwendet. S1e heiSt SchHtzwert des Parameters. Man schreibt d(x, ---, x ) = e (lies: d ist SchHtzwert fur e).
|
![]() ![]() You may like...
Metabotropic GPCRs: TGR5 and P2Y…
Senthilkumar Rajagopal, Murugavel Ponnusamy
Hardcover
R2,873
Discovery Miles 28 730
|