Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book introduces the principles and techniques of modern electron paramagnetic resonance (EPR) spectroscopy that are essential to determine microscopic defect structures. Many different magnetic resonance methods are required for investigating the microscopic and electronic properties of solids and uncovering correlations between those properties. In addition to EPR, such methods include electron nuclear double resonance (ENDOR), electronically and optically detected EPR (also known as ODENDOR), and electronically and optically detected ENDOR. This book comprehensively discusses experimental, technological, and theoretical aspects of these techniques from a practical point of view, with examples of semiconductors and insulators. While the non-specialist learns about the potential of the different methods, the researcher finds help in the application of commercial apparatus and guidance from ab initio theory for deriving structure models from data.
Currently this is "the" book providing a thorough introduction and a unified theoretical basis for the interpretation of equilibrium transport processes in amorphous hydrogenated tetrahydrally coordinated semiconductors - a topic of great interest to physicists and material scientists (first devices for practical applications are already being manufactured). Most of the relevant literature is reviewed with particular emphasis on the approach developed by the authors. It explains most of the experimental data and allows the extraction of information about microscopic transport processes and parameters from equilibrium transport data. This work treats electronic transport in the mentioned type of semiconductors and in particular in a-Si: H and a-Ge: H. From elementary concepts the theory is developed towards higher degrees of completeness and sophistication. Further refinements for coping with the complexity of real systems are given. The comparison of theory with experiment is an important part of the book.
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy." High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available."
|
You may like...
|