![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Proceedings of the NATO Advanced Study Institute, Cargese, Corsica, France, 18-31 July, 1988"
Phase transitions are involved in phenomena ranging from the
initial stages of the creation of the Universe to the existence of
biological objects. It is natural to as whether any phenomena
analogous to phase transitions are possible in disordered
substances like liquids and glasses. The possibility of such
transitions is still very much a matter of debate. Neither the
nature nor the features of transformations in liquids and glasses
are yet clear, nor is the nature of the order parameters.
Investigations in recent years have shown that transformations in
liquids and glasses lead to a drastic change of their physical
properties and short-range order structure.
We have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Schaefer and C. C. Han in Dynamic Light Scattering, R. Pecora ed, Plenum, NY, 1985) p. 181. 4 P. Sen, this book. S J. E. Martin and B. J. Ackerson, Phys. Rev. A :11, 1180 (1985). 6 J. E. Martin, to be published. 7 D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53,1657 (1984) . 8 J. E. Martin, D. W. Schaefer and A. J. Hurd, to be published; D. W. Schaefer, K. D. Keefer, J. E. Martin, and A. J. Hurd, in Physics of Finely Divided Matter, M. Daoud, Ed., Springer Verlag, NY, 1985. 9 D. W. Schaefer and A. J. Hurd, to be published. lOJ. E. Martin, J. Appl. Cryst. (to be published).
Proceedings of the NATO Advanced Study Institute on Propagation of Correlations in Constrained Systems, Cargese, Corsica, France, July 2-14, 1990"
Phase transitions are involved in phenomena ranging from the
initial stages of the creation of the Universe to the existence of
biological objects. It is natural to as whether any phenomena
analogous to phase transitions are possible in disordered
substances like liquids and glasses. The possibility of such
transitions is still very much a matter of debate. Neither the
nature nor the features of transformations in liquids and glasses
are yet clear, nor is the nature of the order parameters.
Investigations in recent years have shown that transformations in
liquids and glasses lead to a drastic change of their physical
properties and short-range order structure.
Proceedings of the NATO Advanced Study Institute on Propagation of Correlations in Constrained Systems, Cargese, Corsica, France, July 2-14, 1990
Proceedings of the NATO Advanced Study Institute, Cargese, Corsica, France, 18-31 July, 1988
We have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Schaefer and C. C. Han in Dynamic Light Scattering, R. Pecora ed, Plenum, NY, 1985) p. 181. 4 P. Sen, this book. S J. E. Martin and B. J. Ackerson, Phys. Rev. A :11, 1180 (1985). 6 J. E. Martin, to be published. 7 D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53,1657 (1984) . 8 J. E. Martin, D. W. Schaefer and A. J. Hurd, to be published; D. W. Schaefer, K. D. Keefer, J. E. Martin, and A. J. Hurd, in Physics of Finely Divided Matter, M. Daoud, Ed., Springer Verlag, NY, 1985. 9 D. W. Schaefer and A. J. Hurd, to be published. lOJ. E. Martin, J. Appl. Cryst. (to be published).
This set of materials for doing experiments and using computer simulations in science draws upon a variety of fields: biology, chemistry, earth science, and physics. The experiments are unified through the theme of identifying random behavior at the microscopic level in nature, which lead to the formation of patterns at the macroscopic level. With an accompanying CD-ROM and rich web site this book provides interesting laboratory experiments and computer simulations through which readers can learn science.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|