0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Optical MEMS for Chemical Analysis and Biomedicine (Hardcover): Hongrui Jiang Optical MEMS for Chemical Analysis and Biomedicine (Hardcover)
Hongrui Jiang
R3,989 R3,591 Discovery Miles 35 910 Save R398 (10%) Ships in 10 - 15 working days

Optical MEMS are micro-electromechanical systems merged with micro-optics. They allow sensing or manipulating optical signals on a very small size scale using integrated mechanical, optical, and electrical systems and hold great promise specifically in biomedical applications, among others. This book describes the current state of optical MEMS in chemical and biomedical analysis with topics covered including fabrication and manufacturing technology for optical MEMS; electrothermally-actuated MEMS scanning micromirrors and their applications in endoscopic optical coherence tomography imaging; electrowetting-based microoptics; microcameras; biologically inspired optical surfaces for miniaturized optical systems; tuning nanophotonic cavities with nanoelectromechanical systems; quantum dot nanophotonics - micropatterned excitation, microarray imaging and hyperspectral microscopy; photothermal microfluidics; optical manipulation for biomedical applications; polymer-based optofluidic lenses; and nanostructured aluminum oxide-based optical biosensing and imaging. Bringing together topics representing the most exciting progress made and current trends in the field in recent years, this book is an essential addition to the bookshelves of researchers and advanced students working on developing, manufacturing or applying optical MEMS and other sensors.

Microlenses - Properties, Fabrication and Liquid Lenses (Paperback): Hongrui Jiang, Xuefeng Zeng Microlenses - Properties, Fabrication and Liquid Lenses (Paperback)
Hongrui Jiang, Xuefeng Zeng
R1,554 Discovery Miles 15 540 Ships in 12 - 19 working days

Due to the development of microscale fabrication methods, microlenses are being used more and more in many unique applications, such as artificial implementations of compound eyes, optical communications, and labs-on-chips. Liquid microlenses, in particular, represent an important and growing research area yet there are no books devoted to this topic that summarize the research to date. Rectifying this deficiency, Microlenses: Properties, Fabrication and Liquid Lenses examines the recent progress in the emerging field of liquid-based microlenses. After describing how certain problems in optics can be solved by liquid microlenses, the book introduces the physics and fabrication methods involved in microlenses. It also details the facility and equipment requirements for general fabrication methods. The authors then present examples of various microlenses with non-tunable and tunable focal lengths based on different mechanisms, including: Non-tunable microlenses: Ge/SiO2 core/shell nanolenses, glass lenses made by isotropic etching, self-assembled lenses and lens arrays, lenses fabricated by direct photo-induced polymerization, lenses formed by thermally reflowing photoresist, lenses formed from inkjet printing, arrays fabricated through molding processes, and injection-molded plastic lenses Electrically tuned microlenses: liquid crystal-based lenses and liquid lenses driven by electrostatic forces, dielectrophoretic forces, electrowetting, and electrochemical reactions Mechanically tunable microlenses: thin-membrane lenses with varying apertures, pressures, and surface shapes; swellable hydrogel lenses; liquid-liquid interface lenses actuated by environmentally stimuli-responsive hydrogels; and oscillating lens arrays driven by sound waves Horizontal microlenses: two-dimensional polymer lenses, tunable and movable liquid droplets as lenses, hydrodynamically tuned cylindrical lenses, liquid core and liquid cladding lenses, air-liquid interface lenses, and tunable liquid gradient refractive index lenses The book concludes by summarizing the importance of microlenses, shedding light on future microlens work, and exploring related challenges, such as the packaging of systems, effects of gravity, evaporation of liquids, aberrations, and integration with other optical components.

Microlenses - Properties, Fabrication and Liquid Lenses (Hardcover): Hongrui Jiang, Xuefeng Zeng Microlenses - Properties, Fabrication and Liquid Lenses (Hardcover)
Hongrui Jiang, Xuefeng Zeng
R4,921 Discovery Miles 49 210 Ships in 12 - 19 working days

Due to the development of microscale fabrication methods, microlenses are being used more and more in many unique applications, such as artificial implementations of compound eyes, optical communications, and labs-on-chips. Liquid microlenses, in particular, represent an important and growing research area yet there are no books devoted to this topic that summarize the research to date. Rectifying this deficiency, Microlenses: Properties, Fabrication and Liquid Lenses examines the recent progress in the emerging field of liquid-based microlenses. After describing how certain problems in optics can be solved by liquid microlenses, the book introduces the physics and fabrication methods involved in microlenses. It also details the facility and equipment requirements for general fabrication methods. The authors then present examples of various microlenses with non-tunable and tunable focal lengths based on different mechanisms, including: Non-tunable microlenses: Ge/SiO2 core/shell nanolenses, glass lenses made by isotropic etching, self-assembled lenses and lens arrays, lenses fabricated by direct photo-induced polymerization, lenses formed by thermally reflowing photoresist, lenses formed from inkjet printing, arrays fabricated through molding processes, and injection-molded plastic lenses Electrically tuned microlenses: liquid crystal-based lenses and liquid lenses driven by electrostatic forces, dielectrophoretic forces, electrowetting, and electrochemical reactions Mechanically tunable microlenses: thin-membrane lenses with varying apertures, pressures, and surface shapes; swellable hydrogel lenses; liquid-liquid interface lenses actuated by environmentally stimuli-responsive hydrogels; and oscillating lens arrays driven by sound waves Horizontal microlenses: two-dimensional polymer lenses, tunable and movable liquid droplets as lenses, hydrodynamically tuned cylindrical lenses, liquid core and liquid cladding lenses, air-liquid interface lenses, and tunable liquid gradient refractive index lenses The book concludes by summarizing the importance of microlenses, shedding light on future microlens work, and exploring related challenges, such as the packaging of systems, effects of gravity, evaporation of liquids, aberrations, and integration with other optical components.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Roman
Cas Wepener Paperback R307 Discovery Miles 3 070
Stiltetyd
Marita van der Vyfer Paperback R297 Discovery Miles 2 970
Book Lovers
Emily Henry Paperback  (4)
R275 R254 Discovery Miles 2 540
Young Mungo
Douglas Stuart Paperback R340 R308 Discovery Miles 3 080
The Party
Elizabeth Day Paperback  (1)
R309 R281 Discovery Miles 2 810
Pleasures Of The Harbour
Adam Kethro Paperback  (2)
R295 R264 Discovery Miles 2 640
It Starts With Us
Colleen Hoover Paperback R300 R268 Discovery Miles 2 680
Road And Bridges
Glynnis Hayward Paperback R271 Discovery Miles 2 710
Great Big Beautiful Life
Emily Henry Paperback R395 R353 Discovery Miles 3 530
The Collected Regrets Of Clover
Mikki Brammer Paperback R370 R342 Discovery Miles 3 420

 

Partners