Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book brings together original work from a number of authors who have made significant contributions to the evolution and use of nonstandard computing methods in chemistry and pharmaceutical industry. The contributions to this book cover a wide range of applications of Soft Computing to the chemical domain. Soft Computing applications are able to approximate many different kinds of real-world systems; to tolerate imprecision, partial truth, and uncertainty; and to learn from their environment and generate solutions of low cost, high robustness, and tractability. Presented applications are the optimization of the structure of atom clusters, the design of safe textile materials, real-time monitoring of pollutants in the workplace, quantitative structure-activity relationships, the analysis of Mössbauer spectra, the synthesis of methanol or the use of bioinformatics in the clustering of data within large biochemical databases. With this diverse range of applications, the book appeals to professionals, researchers and developers of software tools for the design of Soft Computing-based systems in chemistry and pharmaceutical industry, and to many others within the computational intelligence community.
Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.
The contributions to this book cover a wide range of applications of Soft Computing to the chemical domain. The early roots of Soft Computing can be traced back to Lotfi Zadeh's work on soft data analysis [1] published in 1981. 'Soft Computing' itself became fully established about 10 years later, when the Berkeley Initiative in Soft Computing (SISC), an industrial liaison program, was put in place at the University of California - Berkeley. Soft Computing applications are characterized by their ability to: * approximate many different kinds of real-world systems; * tolerate imprecision, partial truth, and uncertainty; and * learn from their environment. Such characteristics commonly lead to a better ability to match reality than other approaches can provide, generating solutions of low cost, high robustness, and tractability. Zadeh has argued that soft computing provides a solid foundation for the conception, design, and application of intelligent systems employing its methodologies symbiotically rather than in isolation. There exists an implicit commitment to take advantage of the fusion of the various methodologies, since such a fusion can lead to combinations that may provide performance well beyond that offered by any single technique.
It is clear that the techniques of artificial intelligence are useful for more than just the development of thinking machines they constitute powerful problem-solving tools in their own right and expand the range of problems in science that can be tackled. AI methods can now be used on a routine basis by scientists in academic research as well as the commercial world, it is therefore vital that science students are exposed to, and understand these techniques. This is the first book to present an introduction to AI methods for science undergraduates. The examples are drawn mainly from chemistry but the book is suited to a general scientific audience wanting to know more about how computers can help to understand and interpret science. This book is intended for first, second, and third year undergraduates in chemistry and other disciplines with an interest in the applications of artificial intelligence.
|
You may like...
|