0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (5)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Hardcover, 2000 ed.): I.S.... Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Hardcover, 2000 ed.)
I.S. Krasil'shchik, P. H. Kersten
R4,581 Discovery Miles 45 810 Ships in 10 - 15 working days

To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.

Lie Groups and Lie Algebras - Their Representations, Generalisations and Applications (Hardcover, 1998 ed.): B.P. Komrakov,... Lie Groups and Lie Algebras - Their Representations, Generalisations and Applications (Hardcover, 1998 ed.)
B.P. Komrakov, I.S. Krasil'shchik, G. L Litvinov, A.B. Sossinsky
R3,140 Discovery Miles 31 400 Ships in 10 - 15 working days

This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations."

Lie Groups and Lie Algebras - Their Representations, Generalisations and Applications (Paperback, Softcover reprint of the... Lie Groups and Lie Algebras - Their Representations, Generalisations and Applications (Paperback, Softcover reprint of the original 1st ed. 1998)
B.P. Komrakov, I.S. Krasil'shchik, G. L Litvinov, A.B. Sossinsky
R2,927 Discovery Miles 29 270 Ships in 10 - 15 working days

This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations."

Geometric and Algebraic Structures in Differential Equations (Paperback, Softcover reprint of the original 1st ed. 1995): P. H.... Geometric and Algebraic Structures in Differential Equations (Paperback, Softcover reprint of the original 1st ed. 1995)
P. H. Kersten, I.S. Krasil'shchik
R1,544 Discovery Miles 15 440 Ships in 10 - 15 working days

The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. Backlund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics."

Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Paperback, Softcover reprint of... Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Paperback, Softcover reprint of hardcover 1st ed. 2000)
I.S. Krasil'shchik, P. H. Kersten
R4,380 Discovery Miles 43 800 Ships in 10 - 15 working days

To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.

Geometric and Algebraic Structures in Differential Equations (Hardcover): P. H. Kersten, I.S. Krasil'shchik Geometric and Algebraic Structures in Differential Equations (Hardcover)
P. H. Kersten, I.S. Krasil'shchik
R2,123 R1,961 Discovery Miles 19 610 Save R162 (8%) Out of stock

The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. BC$cklund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
One Life - Short Stories
Joanne Hichens, Karina M. Szczurek Paperback R320 R284 Discovery Miles 2 840
Return To The Wild
James Hendry Paperback  (3)
R340 R308 Discovery Miles 3 080
EDX Education Activity Cards for Pet…
R79 R75 Discovery Miles 750
Assessment and Treatment of the Elderly…
Gabe Maletta, Francis Pirozzolo Hardcover R2,788 Discovery Miles 27 880
EDX Education 10x Multiplication Table…
R129 R110 Discovery Miles 1 100
A Bridge to Recovery - An Introduction…
Robert L. DuPont, John P. McGovern Hardcover R1,430 Discovery Miles 14 300
The Complete Air Fryer Cookbook - 800…
Dora Johnson Hardcover R919 Discovery Miles 9 190
God Has a Paintbrush
Joyce Licorish Hardcover R688 Discovery Miles 6 880
In the Long Run...Longitudinal Studies…
Group for the Advancement of Psychiatry Hardcover R1,325 Discovery Miles 13 250
Family Therapy and Mental Health…
Malcolm M. Macfarlane Hardcover R6,611 Discovery Miles 66 110

 

Partners