Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book presents modern functional analysis methods for the sensitivity analysis of some infinite-dimensional systems governed by partial differential equations. The main topics are treated in a general and systematic way. They include many classical applications such as the Signorini problem, the elastic-plastic torsion problem and the visco-elastic-plastic problem. The "material derivative" from which any kind of shape derivative of a cost functional can be derived is defined. New results about the wave equation and the unilateral problem are also included in this book, which is intended to serve as a basic reference work for the algorithmic approach to shape optimization problems.
Optimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.
This volume comprises the proceedings of the Working Conference "Boundary variations and boundary control" held in Nice (France), June 10-13, 1986. The aim of this Conference was to stimulate exchange of ideas between the group working on shape optimization (including free boundary problems) and the group working on boundary control of hyperbolic systems (including stabilization). An important remark is that if one considers a dynamical system governed by linear elasticity the choice of Lagrangian coordinates leads to discuss boundary conditions, or boundary control (for example to stabilize), while the choice of Eulerian coordinates lead to a moving boundary and moving domain . This remark challenges us to consider the domain (or its boundary) as a control.
|
You may like...
What To Do When You Don't Know What To…
David Jeremiah
Paperback
(2)
|