Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces.
What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? Such questions are treated in geometric discrepancy theory. The book is an accessible and lively introduction to this area, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research. Including a wide variety of mathematical techniques (from harmonic analysis, combinatorics, algebra etc.) in action on non-trivial examples, the book is suitable for a "special topic" course for early graduates in mathematics and computer science. Besides professional mathematicians, it will be of interest to specialists in fields where a large collection of objects should be "uniformly" represented by a smaller sample (such as high-dimensional numerical integration in computational physics or financial mathematics, efficient divide-and-conquer algorithms in computer science, etc.).
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the "semidefinite side" of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms."
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the "semidefinite side" of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms."
What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? This book is an accessible and lively introduction to the area of geometric discrepancy theory, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research.
This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces.
The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming." A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes."
A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. They are scattered in research papers or outlined in surveys, and they often use topological notions not commonly known among combinatorialists or computer scientists. This book is the first textbook treatment of a significant part of such results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level (for example, homology theory and homotopy groups are completely avoided). No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained. At the same time, many substantial combinatorial results are covered, sometimes with some of the most important results, such as Kneser's conjecture, showing them from various points of view. The history of the presented material, references, related results, and more advanced methods are surveyed in separate subsections. The text is accompanied by numerous exercises, of varying difficulty. Many of the exercises actually outline additional results that did not fit in the main text. The book is richly illustrated, and it has a detailed index and an extensive bibliography. This text started with a one-semester graduate course the author taught in fall 1993 in Prague. The transcripts of the lectures by the participants served as a basis of the first version. Some years later, a course partially based on that text was taught by Günter M. Ziegler in Berlin. The book is based on a thoroughly rewritten version prepared during a pre-doctoral course the author taught at the ETH Zurich in fall 2001. Most of the material was covered in the course: Chapter 1 was assigned as an introductory reading text, and the other chapters were presented in approximately 30 hours of teaching (by 45 minutes), with some omissions throughout and with only a sketchy presentation of the last chapter.
This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.
This book is a clear and self-contained introduction to discrete
mathematics. Aimed mainly at undergraduate and early graduate
students of mathematics and computer science, it is written with
the goal of stimulating interest in mathematics and an active,
problem-solving approach to the presented material. The reader is
led to an understanding of the basic principles and methods of
actually doing mathematics (and having fun at that). Being more
narrowly focused than many discrete mathematics textbooks and
treating selected topics in an unusual depth and from several
points of view, the book reflects the conviction of the authors,
active and internationally renowned mathematicians, that the most
important gain from studying mathematics is the cultivation of
clear and logical thinking and habits useful for attacking new
problems. More than 400 enclosed exercises with a wide range of
difficulty, many of them accompanied by hints for solution, support
this approach to teaching. The readers will appreciate the lively
and informal style of the text accompanied by more than 200
drawings and diagrams. Specialists in various parts of science with
a basic mathematical education wishing to apply discrete
mathematics in their field can use the book as a useful source, and
even experts in combinatorics may occasionally learn from pointers
to research literature or from presentations of recent results.
Invitation to Discrete Mathematics should make a delightful reading
both for beginners and for mathematical professionals.
Cet ouvrage propose une initiation simple et complete aux fondements des mathematiques discretes. Il encourage une approche active de la matiere, fondee sur la resolution de nombreux exercices, et le style utilise pour sa redaction ne peut que stimuler l'interet du lecteur pour les mathematiques. L'expose aborde des themes aussi varies que la combinatoire, la theorie des graphes, les methodes probabilistes elementaires, les plans projectifs finis, les applications combinatoires de l'algebre lineaire et de l'analyse ainsi que les fonctions generatrices. Les lecteurs apprecieront les quelques deux cents figures et quatre cents exercices qui illustrent le propos. Ce livre s'adresse aux etudiants des premier et deuxieme cycles universitaires (informatique et mathematiques). Il comporte des rappels sur les notions de mathematiques generales utilisees dans l'expose, ne supposant ainsi pratiquement aucun prerequis.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|