![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The extreme ?exibility of recon?gurable architectures and their performance pot- tial have made them a vehicle of choice in a wide range of computing domains, from rapid circuit prototyping to high-performance computing. The increasing availab- ity of transistors on a die has allowed the emergence of recon?gurable architectures with a large number of computing resources and interconnection topologies. To - ploit the potential of these recon?gurable architectures, programmers are forced to map their applications, typically written in high-level imperative programming l- guages, such as C or MATLAB, to hardware-oriented languages such as VHDL or Verilog. In this process, they must assume the role of hardware designers and software programmers and navigate a maze of program transformations, mapping, and synthesis steps to produce ef?cient recon?gurable computing implementations. The richness and sophistication of any of these application mapping steps make the mapping of computations to these architectures an increasingly daunting process. It is thus widely believed that automatic compilation from high-level programming languages is the key to the success of recon?gurable computing. This book describes a wide range of code transformations and mapping te- niques for programs described in high-level programming languages, most - tably imperative languages, to recon?gurable architectures.
The extreme ?exibility of recon?gurable architectures and their performance pot- tial have made them a vehicle of choice in a wide range of computing domains, from rapid circuit prototyping to high-performance computing. The increasing availab- ity of transistors on a die has allowed the emergence of recon?gurable architectures with a large number of computing resources and interconnection topologies. To - ploit the potential of these recon?gurable architectures, programmers are forced to map their applications, typically written in high-level imperative programming l- guages, such as C or MATLAB, to hardware-oriented languages such as VHDL or Verilog. In this process, they must assume the role of hardware designers and software programmers and navigate a maze of program transformations, mapping, and synthesis steps to produce ef?cient recon?gurable computing implementations. The richness and sophistication of any of these application mapping steps make the mapping of computations to these architectures an increasingly daunting process. It is thus widely believed that automatic compilation from high-level programming languages is the key to the success of recon?gurable computing. This book describes a wide range of code transformations and mapping te- niques for programs described in high-level programming languages, most - tably imperative languages, to recon?gurable architectures.
This book constitutes the refereed proceedings of the Third International Workshop on Applied Reconfigurable Computing, ARC 2007, held in Mangaratiba, Brazil, in March 2007. The 27 full papers and 10 short papers presented together with a late-comer contribution from ARC 2006 were thoroughly reviewed and selected from 72 submissions. The papers are organized in topical sections on architectures, mapping techniques and tools, arithmetic, and applications.
This book constitutes the thoroughly refereed post-proceedings of the Second International Workshop on Reconfigurable Computing, ARC 2006, held in Delft, The Netherlands, in March 2006. The 22 revised full papers and 35 revised short papers presented were thoroughly reviewed and selected from 95 submissions. The papers are organized in topical sections on applications, power, image processing, organization and architecture, networks and communication, security, and tools.
This book constitutes the proceedings of the 29th International Conference on Architecture of Computing Systems, ARCS 2016, held in Nuremberg, Germany, in April 2016. The 29 full papers presented in this volume were carefully reviewed and selected from 87 submissions. They were organized in topical sections named: configurable and in-memory accelerators; network-on-chip and secure computing architectures; cache architectures and protocols; mapping of applications on heterogeneous architectures and real-time tasks on multiprocessors; all about time: timing, tracing, and performance modeling; approximate and energy-efficient computing; allocation: from memories to FPGA hardware modules; organic computing systems; and reliability aspects in NoCs, caches, and GPUs.
This book constitutes the thoroughly refereed conference proceedings of the 10th International Symposium on Reconfigurable Computing: Architectures, Tools and Applications, ARC 2014, held in Vilamoura, Portugal, in April 2014. The 16 revised full papers presented together with 17 short papers and 6 special session papers were carefully reviewed and selected from 57 submissions. The topics covered are applications; methods, frameworks and OS for debug, over-clocking, and relocation; memory architectures; methodologies and tools and architectures.
|
![]() ![]() You may like...
|