![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
In 1984, N. Karmarkar published a seminal paper on algorithmic linear programming. During the subsequent decade, it stimulated a huge outpouring of new algorithmic results by researchers world-wide in many areas of mathematical programming and numerical computation. This book gives an overview of the resulting, dramatic reorganization that has occurred in one of these areas: algorithmic differentiable optimization and equation-solving, or, more simply, algorithmic differentiable programming. The book is aimed at readers familiar with advanced calculus, numerical analysis, in particular numerical linear algebra, the theory and algorithms of linear and nonlinear programming, and the fundamentals of computer science, in particular, computer programming and the basic models of computation and complexity theory. J.L. Nazareth is a Professor in the Department of Pure and Applied Mathematics at Washington State University. He is the author of two books previously published by Springer-Verlag, DLP and Extensions: An Optimization Model and Decision Support System (2001) and The Newton-Cauchy Framework: A Unified Approach to Unconstrained Nonlinear Minimization (1994).
DLP denotes a dynamic-linear modeling and optimization approach to computational decision support for resource planning problems that arise, typically, within the natural resource sciences and the disciplines of operations research and operational engineering. It integrates techniques of dynamic programming (DP) and linear programming (LP) and can be realized in an immediate, practical and usable way. Simultaneously DLP connotes a broad and very general modeling/ algorithmic concept that has numerous areas of application and possibilities for extension. Two motivating examples provide a linking thread through the main chapters, and an appendix provides a demonstration program, executable on a PC, for hands-on experience with the DLP approach.
DLP denotes a dynamic-linear modeling and optimization approach to computational decision support for resource planning problems that arise, typically, within the natural resource sciences and the disciplines of operations research and operational engineering. The text examines the techniques of dynamic programming (DP) and linear programming (LP). DLP also connotes a broad modeling/algorithmic concept that has numerous areas of application. Two motivating examples provide a linking thread through the main chapters. The appendix provides a demonstration program, executable on a PC, for hands-on experience with the DLP approach.
In 1984, N. Karmarkar published a seminal paper on algorithmic linear programming. During the subsequent decade, it stimulated a huge outpouring of new algorithmic results by researchers world-wide in many areas of mathematical programming and numerical computation. This book gives an overview of the resulting, dramatic reorganization that has occurred in one of these areas: algorithmic differentiable optimization and equation-solving, or, more simply, algorithmic differentiable programming. The book is aimed at readers familiar with advanced calculus, numerical analysis, in particular numerical linear algebra, the theory and algorithms of linear and nonlinear programming, and the fundamentals of computer science, in particular, computer programming and the basic models of computation and complexity theory. J.L. Nazareth is a Professor in the Department of Pure and Applied Mathematics at Washington State University. He is the author of two books previously published by Springer-Verlag, DLP and Extensions: An Optimization Model and Decision Support System (2001) and The Newton-Cauchy Framework: A Unified Approach to Unconstrained Nonlinear Minimization (1994).
Computational unconstrained nonlinear optimization comes to life from a study of the interplay between the metric-based (Cauchy) and model-based (Newton) points of view. The motivating problem is that of minimizing a convex quadratic function. This research monograph reveals for the first time the essential unity of the subject. It explores the relationships between the main methods, develops the Newton-Cauchy framework and points out its rich wealth of algorithmic implications and basic conceptual methods. The monograph also makes a valueable contribution to unifying the notation and terminology of the subject. It is addressed topractitioners, researchers, instructors, and students and provides a useful and refreshing new perspective on computational nonlinear optimization.
|
![]() ![]() You may like...
The Gambling Animal - Humanity's…
Glenn Harrison, Don Ross
Paperback
This Will Not Pass - Trump, Biden, And…
Jonathan Martin, Alexander Burns
Hardcover
Fixed Point Theory in Metric Type Spaces
Ravi P. Agarwal, Erdal Karapinar, …
Hardcover
R4,156
Discovery Miles 41 560
Mathematical Analysis - An Introduction…
Mariano Giaquinta, Giuseppe Modica
Hardcover
R3,498
Discovery Miles 34 980
|