![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Linear systems can be regarded as a causal shift-invariant operator on a Hilbert space of signals, and by doing so this book presents an introduction to the common ground between operator theory and linear systems theory. The book therefore includes material on pure mathematical topics such as Hardy spaces, closed operators, the gap metric, semigroups, shift-invariant subspaces, the commutant lifting theorem and almost-periodic functions, which would be entirely suitable for a course in functional analysis; at the same time, the book includes applications to partial differential equations, to the stability and stabilization of linear systems, to power signal spaces (including some recent material not previously available in books), and to delay systems, treated from an input/output point of view. Suitable for students of analysis, this book also acts as an introduction to a mathematical approach to systems and control for graduate students in departments of applied mathematics or engineering.
This book - an outgrowth of a topical summer school - sets out to introduce non-specialists from physics and engineering to the basic mathematical concepts of approximation and Fourier theory. After a general introduction, Part II of this volume contains basic material on the complex and harmonic analysis underlying the further developments presented. Part III deals with the essentials of approximation theory while Part IV completes the foundations by a tour of probability theory. Part V reviews some major applications in signal and control theory. In Part VI mathematical aspects of dynamical systems theory are discussed. Part VII, finally, is devoted to a modern approach to two physics problems: turbulence and the control and noise analysis in gravitational waves measurements.
Linear systems can be regarded as a causal shift-invariant operator on a Hilbert space of signals, and by doing so this book presents an introduction to the common ground between operator theory and linear systems theory. The book therefore includes material on pure mathematical topics such as Hardy spaces, closed operators, the gap metric, semigroups, shift-invariant subspaces, the commutant lifting theorem and almost-periodic functions, which would be entirely suitable for a course in functional analysis; at the same time, the book includes applications to partial differential equations, to the stability and stabilization of linear systems, to power signal spaces (including some recent material not previously available in books), and to delay systems, treated from an input/output point of view. Suitable for students of analysis, this book also acts as an introduction to a mathematical approach to systems and control for graduate students in departments of applied mathematics or engineering.
This book is concerned with applications of functional analysis and complex analysis to problems of interpolation in spaces of analytic functions. The problems we look at are those of recovery, producing approximations to functions from measured values. These values may in turn be corrupted by small errors and we wish to be able to produce a good model using this partial and inaccurate information. The practical applications include systems identification, signal processing, and sampling. A selection of the material of this book would be appropriate for a graduate course on function spaces and operators acting on them. Chapter 8 gives a mathematician's introduction to H( control theory, one of the big research areas of the last 15 years. Worst-case identification (discussed in Chapters 3,4, and 6) is a major area of modern systems theory to which the author has made many contributions. This book gives the first theoretical treatment of this area: it includes much practical material on input design and identification algorithms. Sampling and systems processing is another active area of research. The book presents an accessible treatment of several advanced topics, some included for the first time in any book.
Hankel operators are of wide application in mathematics (functional analysis, operator theory, approximation theory) and engineering (control theory, systems analysis) and this account of them is both elementary and rigorous. The book is based on graduate lectures given to an audience of mathematicians and control engineers, but to make it reasonably self-contained, the author has included several appendices on mathematical topics unlikely to be met by undergraduate engineers. The main prerequisites are basic complex analysis and some functional analysis, but the presentation is kept straightforward, avoiding unnecessary technicalities so that the fundamental results and their applications are evident. Some 45 exercises are included.
One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics.
|
![]() ![]() You may like...
G Protein Methods and Protocols - Role…
Ram K. Mishra, Glen B. Baker, …
Hardcover
R4,423
Discovery Miles 44 230
|