Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This comprehensive book presents a rigorous and state-of-the-art treatment of variational inequalities and complementarity problems in finite dimensions. This class of mathematical programming problems provides a powerful framework for the unified analysis and development of efficient solution algorithms for a wide range of equilibrium problems in economics, engineering, finance, and applied sciences. New research material and recent results, not otherwise easily accessible, are presented in a self-contained and consistent manner. The book is published in two volumes, with the first volume concentrating on the basic theory and the second on iterative algorithms. Both volumes contain abundant exercises and feature extensive bibliographies. Written with a wide range of readers in mind, including graduate students and researchers in applied mathematics, optimization, and operations research as well as computational economists and engineers, this book will be an enduring reference on the subject and provide the foundation for its sustained growth.
This comprehensive book presents a rigorous and state-of-the-art treatment of variational inequalities and complementarity problems in finite dimensions. This class of mathematical programming problems provides a powerful framework for the unified analysis and development of efficient solution algorithms for a wide range of equilibrium problems in economics, engineering, finance, and applied sciences. New research material and recent results, not otherwise easily accessible, are presented in a self-contained and consistent manner. The book is published in two volumes, with the first volume concentrating on the basic theory and the second on iterative algorithms. Both volumes contain abundant exercises and feature extensive bibliographies. Written with a wide range of readers in mind, including graduate students and researchers in applied mathematics, optimization, and operations research as well as computational economists and engineers, this book will be an enduring reference on the subject and provide the foundation for its sustained growth.
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed."
Computational Optimization: A Tribute to Olvi Mangasarian serves as an excellent reference, providing insight into some of the most challenging research issues in the field. This collection of papers covers a wide spectrum of computational optimization topics, representing a blend of familiar nonlinear programming topics and such novel paradigms as semidefinite programming and complementarity-constrained nonlinear programs. Many new results are presented in these papers which are bound to inspire further research and generate new avenues for applications. An informal categorization of the papers includes: Algorithmic advances for special classes of constrained optimization problems Analysis of linear and nonlinear programs Algorithmic advances B- stationary points of mathematical programs with equilibrium constraints Applications of optimization Some mathematical topics Systems of nonlinear equations.
This book provides a solid foundation and an extensive study for an important class of constrained optimization problems known as Mathematical Programs with Equilibrium Constraints (MPEC), which are extensions of bilevel optimization problems. The book begins with the description of many source problems arising from engineering and economics that are amenable to treatment by the MPEC methodology. Error bounds and parametric analysis are the main tools to establish a theory of exact penalisation, a set of MPEC constraint qualifications and the first-order and second-order optimality conditions. The book also describes several iterative algorithms such as a penalty-based interior point algorithm, an implicit programming algorithm and a piecewise sequential quadratic programming algorithm for MPECs. Results in the book are expected to have significant impacts in such disciplines as engineering design, economics and game equilibria, and transportation planning, within all of which MPEC has a central role to play in the modelling of many practical problems.
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
Computational Optimization: A Tribute to Olvi Mangasarian serves as an excellent reference, providing insight into some of the most challenging research issues in the field. This collection of papers covers a wide spectrum of computational optimization topics, representing a blend of familiar nonlinear programming topics and such novel paradigms as semidefinite programming and complementarity-constrained nonlinear programs. Many new results are presented in these papers which are bound to inspire further research and generate new avenues for applications. An informal categorization of the papers includes: * Algorithmic advances for special classes of constrained optimization problems * Analysis of linear and nonlinear programs * Algorithmic advances * B- stationary points of mathematical programs with equilibrium constraints * Applications of optimization * Some mathematical topics * Systems of nonlinear equations.
The ?nite-dimensional nonlinear complementarity problem (NCP) is a s- tem of ?nitely many nonlinear inequalities in ?nitely many nonnegative variables along with a special equation that expresses the complementary relationship between the variables and corresponding inequalities. This complementarity condition is the key feature distinguishing the NCP from a general inequality system, lies at the heart of all constrained optimi- tion problems in ?nite dimensions, provides a powerful framework for the modeling of equilibria of many kinds, and exhibits a natural link between smooth and nonsmooth mathematics. The ?nite-dimensional variational inequality (VI), which is a generalization of the NCP, provides a broad unifying setting for the study of optimization and equilibrium problems and serves as the main computational framework for the practical solution of a host of continuum problems in the mathematical sciences. The systematic study of the ?nite-dimensional NCP and VI began in the mid-1960s; in a span of four decades, the subject has developed into a very fruitful discipline in the ?eld of mathematical programming. The - velopments include a rich mathematical theory, a host of e?ective solution algorithms, a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics. As a result of their broad associations, the literature of the VI/CP has bene?ted from contributions made by mathematicians (pure, applied, and computational), computer scientists, engineers of many kinds (civil, ch- ical, electrical, mechanical, and systems), and economists of diverse exp- tise (agricultural, computational, energy, ?nancial, and spatial).
The ?nite-dimensional nonlinear complementarity problem (NCP) is a s- tem of ?nitely many nonlinear inequalities in ?nitely many nonnegative variables along with a special equation that expresses the complementary relationship between the variables and corresponding inequalities. This complementarity condition is the key feature distinguishing the NCP from a general inequality system, lies at the heart of all constrained optimi- tion problems in ?nite dimensions, provides a powerful framework for the modeling of equilibria of many kinds, and exhibits a natural link between smooth and nonsmooth mathematics. The ?nite-dimensional variational inequality (VI), which is a generalization of the NCP, provides a broad unifying setting for the study of optimization and equilibrium problems and serves as the main computational framework for the practical solution of a host of continuum problems in the mathematical sciences. The systematic study of the ?nite-dimensional NCP and VI began in the mid-1960s; in a span of four decades, the subject has developed into a very fruitful discipline in the ?eld of mathematical programming. The - velopments include a rich mathematical theory, a host of e?ective solution algorithms, a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics. As a result of their broad associations, the literature of the VI/CP has bene?ted from contributions made by mathematicians (pure, applied, and computational), computer scientists, engineers of many kinds (civil, ch- ical, electrical, mechanical, and systems), and economists of diverse exp- tise (agricultural, computational, energy, ?nancial, and spatial).
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed."
This book provides a solid foundation and an extensive study for Mathematical Programs with Equilibrium Constraints (MPEC). It begins with the description of many source problems arising from engineering and economics that are amenable to treatment by the MPEC methodology. Error bounds and parametric analysis are the main tools to establish a theory of exact penalization, a set of MPEC constraint qualifications and the first-order and second-order optimality conditions. The book also describes several iterative algorithms such as a penalty based interior point algorithm, an implicit programming algorithm and a piecewise sequential quadratic programming algorithm for MPECs. Results in the book are expected to have significant impacts in such disciplines as engineering design, economics and game equilibria, and transportation planning, within all of which MPEC has a central role to play in the modeling of many practical problems.
|
You may like...
|