0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Design of Very High-Frequency Multirate Switched-Capacitor Circuits - Extending the Boundaries of CMOS Analog Front-End... Design of Very High-Frequency Multirate Switched-Capacitor Circuits - Extending the Boundaries of CMOS Analog Front-End Filtering (Paperback, Softcover reprint of hardcover 1st ed. 2006)
Ben U Seng Pan, Rui Paulo da Silva Martins, Jose de Albuquerque Epifanio da Franca
R2,950 Discovery Miles 29 500 Ships in 10 - 15 working days

Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique which has its great potential on very high-frequency analog frond-end filtering due to its inherent dual advantage of reducing the speed of data-converters and DSP core together with the specification relaxation of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-speed Switched-Capacitor (SC) circuits are comprehensively discussed:

-Optimum circuit architecture tradeoff analysis
-Simple speed and power trade-off analysis of active elements
-High-order filtering response accuracy with respect to capacitor-ratio mismatches
-Time-interleaved effect with respect to gain and offset mismatch
-Time-interleaved effect with respect to timing-skew and random jitter with non-uniformly holding
-Stage noise analysis and allocation scheme
-Substrate and supply noise reduction
-Gain-and offset-compensation techniques
-High-bandwidth low-power amplifier design and layout
-Very low timing-skew multiphase generation

Two tailor-made optimum design examples in CMOS are presented. The first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest operating frequency, highest filter order and highest center frequency with highest dynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS.

Design of Very High-Frequency Multirate Switched-Capacitor Circuits - Extending the Boundaries of CMOS Analog Front-End... Design of Very High-Frequency Multirate Switched-Capacitor Circuits - Extending the Boundaries of CMOS Analog Front-End Filtering (Hardcover, 2006 ed.)
Ben U Seng Pan, Rui Paulo da Silva Martins, Jose de Albuquerque Epifanio da Franca
R3,115 Discovery Miles 31 150 Ships in 10 - 15 working days

Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique which has its great potential on very high-frequency analog frond-end filtering due to its inherent dual advantage of reducing the speed of data-converters and DSP core together with the specification relaxation of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-speed Switched-Capacitor (SC) circuits are comprehensively discussed:

-Optimum circuit architecture tradeoff analysis
-Simple speed and power trade-off analysis of active elements
-High-order filtering response accuracy with respect to capacitor-ratio mismatches
-Time-interleaved effect with respect to gain and offset mismatch
-Time-interleaved effect with respect to timing-skew and random jitter with non-uniformly holding
-Stage noise analysis and allocation scheme
-Substrate and supply noise reduction
-Gain-and offset-compensation techniques
-High-bandwidth low-power amplifier design and layout
-Very low timing-skew multiphase generation

Two tailor-made optimum design examples in CMOS are presented. The first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest operating frequency, highest filter order and highest center frequency with highest dynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Peptine Pro Equine Hydrolysed Collagen…
R699 R589 Discovery Miles 5 890
Maped Harry Potter Hogwarts Gift Set (13…
R499 R169 Discovery Miles 1 690
Barbie
Margot Robbie, Ryan Gosling Blu-ray disc R266 Discovery Miles 2 660
Complete Clumping Cat Litter (10kg)
R151 Discovery Miles 1 510
Mellerware Non-Stick Vapour ll Steam…
R348 Discovery Miles 3 480
Jurassic Park Trilogy Collection
Sam Neill, Laura Dern, … Blu-ray disc  (1)
R311 Discovery Miles 3 110
Kendall Office Chair (Green)
 (1)
R1,699 R1,346 Discovery Miles 13 460
Bostik Prestik (100g)
R25 Discovery Miles 250
The Ultra Vivid Lament
Manic Street Preachers CD R89 R59 Discovery Miles 590
Ugreen Nylon Hook and Loop Tape (2cm x…
R119 R109 Discovery Miles 1 090

 

Partners