Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.
The contributions in this book focus on a variety of topics related to discrepancy theory, comprising Fourier techniques to analyze discrepancy, low discrepancy point sets for quasi-Monte Carlo integration, probabilistic discrepancy bounds, dispersion of point sets, pair correlation of sequences, integer points in convex bodies, discrepancy with respect to geometric shapes other than rectangular boxes, and also open problems in discrepany theory.
Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.
Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.
Indispensable for students, invaluable for researchers, this comprehensive treatment of contemporary quasi-Monte Carlo methods, digital nets and sequences, and discrepancy theory starts from scratch with detailed explanations of the basic concepts and then advances to current methods used in research. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules have increased in popularity, with many fruitful applications in mathematical practice. These rules require nodes with good uniform distribution properties, and digital nets and sequences in the sense of Niederreiter are known to be excellent candidates. Besides the classical theory, the book contains chapters on reproducing kernel Hilbert spaces and weighted integration, duality theory for digital nets, polynomial lattice rules, the newest constructions by Niederreiter and Xing and many more. The authors present an accessible introduction to the subject based mainly on material taught in undergraduate courses with numerous examples, exercises and illustrations.
|
You may like...
The Little Book Of Safari Animal Sounds
Caz Buckingham, Andrea Pinnington
Board book
(1)
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|