0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stabilization, Safety, and Security of Distributed Systems - 24th International Symposium, SSS 2022, Clermont-Ferrand, France,... Stabilization, Safety, and Security of Distributed Systems - 24th International Symposium, SSS 2022, Clermont-Ferrand, France, November 15-17, 2022, Proceedings (Paperback, 1st ed. 2022)
Stephane Devismes, Franck Petit, Karine Altisen, Giuseppe Antonio Di Luna, Antonio Fernandez Anta
R2,285 Discovery Miles 22 850 Ships in 10 - 15 working days

This book constitutes the proceedings of 24th International Symposium, SSS 2022, which took place in Clermont-Ferrand, France, in November 2022.The 17 regular papers together with 4 invited papers and 7 brief announcements, included in this volume were carefully reviewed and selected from 58 submissions. The SSS 2022 focus on systems built such that they are able to provide on their own guarantees on their structure, performance, and/or security in the face of an adverse environment. The Symposium presents three tracks reflecting major trends related to the conference: (i) Self-stabilizing Systems: Theory and Practice, (ii) Concurrent and Distributed Computing: Foundations, Faulttolerance, and Security, and (iii) Dynamic, Mobile, and Nature-Inspired Computing.

Introduction to Distributed Self-Stabilizing Algorithms (Paperback): Karine Altisen, Stephane Devismes, Swan Dubois, Franck... Introduction to Distributed Self-Stabilizing Algorithms (Paperback)
Karine Altisen, Stephane Devismes, Swan Dubois, Franck Petit
R1,301 Discovery Miles 13 010 Ships in 12 - 19 working days

This book aims at being a comprehensive and pedagogical introduction to the concept of self-stabilization, introduced by Edsger Wybe Dijkstra in 1973. Self-stabilization characterizes the ability of a distributed algorithm to converge within finite time to a configuration from which its behavior is correct (i.e., satisfies a given specification), regardless the arbitrary initial configuration of the system. This arbitrary initial configuration may be the result of the occurrence of a finite number of transient faults. Hence, self-stabilization is actually considered as a versatile non-masking fault tolerance approach, since it recovers from the effect of any finite number of such faults in an unified manner. Another major interest of such an automatic recovery method comes from the difficulty of resetting malfunctioning devices in a large-scale (and so, geographically spread) distributed system (the Internet, Pair-to-Pair networks, and Delay Tolerant Networks are examples of such distributed systems). Furthermore, self-stabilization is usually recognized as a lightweight property to achieve fault tolerance as compared to other classical fault tolerance approaches. Indeed, the overhead, both in terms of time and space, of state-of-the-art self-stabilizing algorithms is commonly small. This makes self-stabilization very attractive for distributed systems equipped of processes with low computational and memory capabilities, such as wireless sensor networks. After more than 40 years of existence, self-stabilization is now sufficiently established as an important field of research in theoretical distributed computing to justify its teaching in advanced research-oriented graduate courses. This book is an initiation course, which consists of the formal definition of self-stabilization and its related concepts, followed by a deep review and study of classical (simple) algorithms, commonly used proof schemes and design patterns, as well as premium results issued from the self-stabilizing community. As often happens in the self-stabilizing area, in this book we focus on the proof of correctness and the analytical complexity of the studied distributed self-stabilizing algorithms. Finally, we underline that most of the algorithms studied in this book are actually dedicated to the high-level atomic-state model, which is the most commonly used computational model in the self-stabilizing area. However, in the last chapter, we present general techniques to achieve self-stabilization in the low-level message passing model, as well as example algorithms.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Politics Of Housing In (Post…
Kirsten Ruther, Martina Barker-Ciganikova, … Hardcover R300 R270 Discovery Miles 2 700
Chronos Docking Station (USB 2.0, 2 PS/2…
R378 Discovery Miles 3 780
An Impartial History of the Present War…
James Murray Paperback R753 Discovery Miles 7 530
Ugreen 20471 notebook stand 39.6 cm…
R442 R402 Discovery Miles 4 020
Managing Banking Relationships
Gerald Leahy Hardcover R2,146 Discovery Miles 21 460
Published This Day - Marketing Books in…
Fred Nesta Hardcover R3,029 Discovery Miles 30 290
1000 Castaways - Fundamentals of…
Clint Ballinger Hardcover R533 R492 Discovery Miles 4 920
The Patriot King Displayed, in the Life…
Edward Lewis Paperback R526 Discovery Miles 5 260
CLUB3D The CSV-1562 is an USB3.2 Gen1…
R6,410 Discovery Miles 64 100
Money and Justice - A critique of modern…
Leszek Niewdana Hardcover R4,780 Discovery Miles 47 800

 

Partners