![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
This research monograph addresses recent developments of wavelet concepts in the context of large scale numerical simulation. It offers a systematic attempt to exploit the sophistication of wavelets as a numerical tool by adapting wavelet bases to the problem at hand. This includes both the construction of wavelets on fairly general domains and the adaptation of wavelet bases to the particular structure of function spaces governing certain variational problems. Those key features of wavelets that make them a powerful tool in numerical analysis and simulation are clearly pointed out. The particular constructions are guided by the ultimate goal to ensure the key features also for general domains and problem classes. All constructions are illustrated by figures and examples are given.
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach. A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses on finite difference and finite element methods. Computer-aided calculation with Maple (TM) completes the book. Throughout, three fundamental examples are studied with different tools: Poisson's equation, the heat equation, and the wave equation on Euclidean domains. The Black-Scholes equation from mathematical finance is one of several opportunities for extension. Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.
Dieses Lehrbuch gibt eine Einfuhrung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur-, Ingenieur und Wirtschaftswissenschaften. Danach werden elementare Loesungsmethoden dargestellt, z.B. fur die Black-Scholes-Gleichung aus der Finanzmathematik. Schliesslich wird die analytische Untersuchung grosser Klassen von partiellen Differenzialgleichungen dargestellt, wobei Hilbert-Raum-Methoden im Mittelpunkt stehen. Numerische Verfahren werden eingefuhrt und mit konkreten Beispielen behandelt. Zu jedem Kapitel finden sich UEbungsaufgaben, mit deren Hilfe der Stoff eingeubt und vertieft werden kann. Dieses Buch richtet sich an Studierende im Bachelor oder im ersten Master-Jahr sowohl in der (Wirtschafts-)Mathematik als auch in den Studiengangen Informatik, Physik und Ingenieurwissenschaften. Die 2. Auflage ist vollstandig durchgesehen, an vielen Stellen didaktisch weiter optimiert und um die Beschreibung variationeller Methoden in Raum und Zeit fur zeitabhangige Probleme erganzt. Stimme zur ersten Auflage Auf dieses Lehrbuch haben wir gewartet. Prof. Dr. Andreas Kleinert in zbMATH
|
![]() ![]() You may like...
The Iona Community and Sermon in Stone
Iona Community, George F. MacLeod
DVD
R340
Discovery Miles 3 400
|