![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
This book provides comprehensive discussion on key topics related to the usage and deployment of software defined networks (SDN) in Internet of Everything applications like, healthcare systems, data centers, edge/fog computing, vehicular networks, intelligent transportation systems, smart grids, smart cities and more. The authors provide diverse solutions to overcome challenges of conventional network binding in various Internet of Everything applications where there is need of an adaptive, agile, and flexible network backbone. The book showcases different deployment models, algorithms and implementations related to the usage of SDN in Internet of Everything applications along with the pros and cons of the same. Even more, this book provides deep insights into the architecture of software defined networking specifically about the layered architecture and different network planes, logical interfaces, and programmable operations. The need of network virtualization and the deployment models for network function virtualization is also included with an aim towards the design of interoperable network architectures by researchers in future. Uniquely, the authors find hands on practical implementation, deployment scenarios and use cases for various software defined networking architectures in Internet of Everything applications like healthcare networks, Internet of Things, intelligent transportation systems, smart grid, underwater acoustic networks and many more. In the end, design and research challenges, open issues, and future research directions are provided in this book for a wide range of readers
This book provides comprehensive discussion on key topics related to the usage and deployment of AI in urban transportation systems including drones. The book presents intelligent solutions to overcome the challenges of static approaches in the transportation sector to make them intelligent, adaptive, agile, and flexible. The book showcases different AI-deployment models, algorithms, and implementations related to intelligent cyber physical systems (CPS) along with their pros and cons. Even more, this book provides deep insights into the CPS specifically about the layered architecture and different planes, interfaces, and programmable network operations. The deployment models for AI-based CPS are also included with an aim towards the design of interoperable and intelligent CPS architectures by researchers in future. The authors present hands on practical implementations, deployment scenarios, and use cases related to different transportation scenarios. In the end, the design and research challenges, open issues, and future research directions are provided.
This book provides comprehensive discussion on key topics related to the usage and deployment of software defined networks (SDN) in Internet of Everything applications like, healthcare systems, data centers, edge/fog computing, vehicular networks, intelligent transportation systems, smart grids, smart cities and more. The authors provide diverse solutions to overcome challenges of conventional network binding in various Internet of Everything applications where there is need of an adaptive, agile, and flexible network backbone. The book showcases different deployment models, algorithms and implementations related to the usage of SDN in Internet of Everything applications along with the pros and cons of the same. Even more, this book provides deep insights into the architecture of software defined networking specifically about the layered architecture and different network planes, logical interfaces, and programmable operations. The need of network virtualization and the deployment models for network function virtualization is also included with an aim towards the design of interoperable network architectures by researchers in future. Uniquely, the authors find hands on practical implementation, deployment scenarios and use cases for various software defined networking architectures in Internet of Everything applications like healthcare networks, Internet of Things, intelligent transportation systems, smart grid, underwater acoustic networks and many more. In the end, design and research challenges, open issues, and future research directions are provided in this book for a wide range of readers
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
|
![]() ![]() You may like...
Trauma and Cognitive Science - A Meeting…
Jennifer J. Freyd, Anne P. Deprince
Paperback
R1,392
Discovery Miles 13 920
Transforming Emotional Pain - An…
Aman Kwatra, Ladislav Timulak, …
Hardcover
R4,173
Discovery Miles 41 730
New Frontiers in Pediatric Traumatic…
Cathy Catroppa, Vicki Anderson, …
Hardcover
R4,467
Discovery Miles 44 670
Trauma Counselling - Principles And…
Alida Herbst, Gerda Reitsma
Paperback
Posttraumatic Growth - Theory, Research…
Richard G. Tedeschi, Jane Shakespeare-Finch, …
Hardcover
R4,177
Discovery Miles 41 770
|