![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 84 matches in All Departments
Dosage Forms, Formulation Developments and Regulations, Volume One in the Recent and Future Trends in Pharmaceutics series, explores aspects of pharmaceutics, with an original approach focused on technology, novelties and future trends in the field. The book discusses the most recent developments in pharmaceutical preformulation and formulation studies, biopharmaceutics and novel pharmaceutical formulations, regulatory affairs, and good manufacturing practices. Exciting areas such as formulation strategies, optimization techniques, the biopharmaceutical classification system, and pharmaceutical aerosols are included. The field of pharmaceutics is highly dynamic and rapidly expanding day-by-day, so it demands a variety of amplified efforts for designing and developing pharmaceutical processes and formulation strategies. This is an essential reference for researchers in academia and industry as well as advanced graduate students in pharmaceutics.
Advanced Nanoformulations: Theranostic Nanosystems, Volume Three examines the applications of nanotherapeutic systems and nanodiagnostics in relation to polymeric nanosystems. In the last decade, numerous biopolymers have been utilized to prepare polymeric nanosystems for therapeutic applications. These biopolymers include polylactic acid, polylactide-co-glycolide, polycaprolactone, acrylic polymers, cellulose and cellulose derivatives, alginates, chitosan, gellan gum, gelatin, albumin, chontroitin sulfate, hyaluronic acid, guar gum, gum Arabic, gum tragacanth, xanthan gum, and starches. Besides these biopolymers, grafted polymers are also being used as advanced polymeric materials to prepare many theranostic nanocarriers and nanoformulations. This book explores the array of polymeric nanosystems to understand therapeutic potentials. It will be useful to pharmaceutical scientists, including industrial pharmacists and analytical scientists, health care professionals, and regulatory scientists actively involved in the pharmaceutical product and process development of tailor-made polysaccharides in drug delivery applications.
Nanostructured Materials for Tissue Engineering introduces the key properties and approaches involved in using nanostructured materials in tissue engineering, including functionalization, nanotechnology-based regenerative techniques, toxicological and biocompatible aspects. A broad range of nanomaterial types are covered, from polymer scaffolds and nanocomposites to gold nanoparticles and quantum dots. This book aids the reader in materials selection, as well as matching to the best applications, including bone, skin, pulmonary or neurological tissue engineering. Users will find this book to be an up-to-date review on this fast-changing field that is ideal for materials scientists, tissue engineers, biomedical engineers, and pharmaceutical scientists.
Plant Polysaccharides as Pharmaceutical Excipients explores innovative techniques and applications of plant-derived polysaccharides as pharmaceutical excipients. Plant polysaccharides are sustainable, renewable and abundantly available, offering attractive properties in terms of water solubility, swelling ability, non-toxicity and biodegradability. These qualities have resulted in extensive exploration into their applications as excipients in a variety of pharmaceutical dosage forms. This book takes a comprehensive, application-oriented approach, drawing on the very latest research that includes sources, classification and extraction methods of plant polysaccharides. Subsequent chapters focus on plant polysaccharides for individual pharmaceutical applications, enabling the reader to understand their preparation for specific targeted uses. Throughout the book, information is supported by illustrations, chemical structures, flow charts and data tables, providing a clear understanding. Finally, future perspectives and challenges are reviewed and discussed.
Design and Applications of Theranostic Nanomedicines reviews the composition and design of various nanomedicines for theranostic applications, helping readers to make informed decisions when exploring novel treatments for disease. This book introduces readers to theranostic nanostructures as nanomedicines, beginning with a balanced look at the associated challenges, costs and benefits. The next section goes on to detail a range of different theranostic nanomedicines and their design, from nanodispersions and nanogels to exosomes and polymeric micelles. A variety of applications is covered, including in the treatment of pulmonary diseases, neurological disorders, cancers and more. The book also takes a look at the toxicological implications of nanotheranostics, an important aspect of any therapy or treatment. Design and Applications of Theranostic Nanomedicines provides a snapshot of the state-of-the-art, and will be of use to materials scientists, biomedical engineers and pharmaceutical scientists with an interest in nanotechnology and theranostics.
Physico-Chemical Aspects of Dosage Forms and Biopharmaceutics: Recent and Future Trends in Pharmaceutics, Volume Two explores aspects of pharmaceutics with an original approach that focuses on technology, novelties and future trends. The field of pharmaceutics is highly dynamic and rapidly expanding day-by-day, so it demands a variety of amplified efforts for designing and developing pharmaceutical processes and formulation strategies. Readers will find practical information for conducting research in pharmaceutics that is ideal for researchers in academia and industry as well as advanced graduate students in pharmaceutics. In addition, the book discusses the most recent developments in biopharmaceutics, including important and exciting areas such as solubility of drugs, pharmaceutical granulation, routes of drug administration, drug absorption, bioavailability and bioequivalence.
Nanostructured Materials for Visible Light Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first three chapters include a general introduction, basic principles, mechanisms, and synthesis methods of nanomaterials for visible light photocatalysis. Recent advances in carbon, bismuth series, transition metal oxide and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed. Later chapters describe the role of phosphides, nitrides, and rare earth-based nanostructured-based materials in visible light photocatalysis, as well as the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, morphology of nanostructured materials and green technology for efficient dye removal under visible-light irradiation are also explored. Other topics covered include large-scale production of nanostructured materials, the challenges in present photocatalytic research, the future scope of nanostructured materials regarding environmental hazard remediation under visible light, and solar light harvesting. This book is a valuable reference to researchers and enables them to learn more about designing advanced nanostructured materials for wastewater treatment and visible-light irradiation.
Alginates in Drug Delivery explores the vital precepts, basic and fundamental aspects of alginates in pharmaceutical sciences, biopharmacology, and in the biotechnology industry. The use of natural polymers in healthcare applications over synthetic polymers is becoming more prevalent due to natural polymers' biocompatibility, biodegradability, economic extraction and ready availability. To fully utilize and harness the potential of alginates, this book presents a thorough understanding of the synthesis, purification, and characterization of alginates and their derivative. This book collects, in a single volume, all relevant information on alginates in health care, including recent advances in the field. This is a highly useful resource for pharmaceutical scientists, health care professionals and regulatory scientists actively involved in the pharmaceutical product and process development of natural polymer containing drug delivery, as well as postgraduate students and postdoctoral research fellows in pharmaceutical sciences.
Advanced and Modern Approaches for Drug Delivery explores novel approaches currently used for drug delivery, including the must up-to-date techniques and technology. The approaches discussed allow pharmaceutical scientists to design effective drug delivery systems or devices for the management and treatment of numerous diseases and conditions. Detailed information on a wide variety of subjects, including dendrimers, lipid nanostructures, solid lipid nanoparticles, stimuli-responsive smart systems, self-assembled protein-drug nanoparticles, nanoconjugate formulations, nanofibers, iontophoretic systems, microneedle systems, ultra-sound triggered systems, targeted carrier-based intracellular delivery systems, resealed erythrocyte-based systems, 3 D-printing tool, site-specific monoclonal antibodies, and bio-inspired systems are all comprehensively discussed. With contributions from those in academia and industry, this book is an excellent reference for all those needing to understand drug delivery systems.
Superhydrophobic Polymer Coatings: Fundamentals, Design, Fabrication, and Applications offers a comprehensive overview of the preparation and applications of polymer coatings with superhydrophobicity, guiding the reader through advanced techniques and scientific principles. Sections present detailed information on the fundamental theories and methods behind the preparation of superhydrophobic polymer coatings and demonstrate the current and potential applications of these materials, covering a range of novel and marketable uses across industry, including coatings with properties such as foul resistance and self-cleaning, anti-icing and ice-release, corrosion inhibition, antibacterial, anti-reflection, slip and drag reduction, oil-water separation, and advanced medical applications. This book is a highly valuable resource for academic researchers, scientists and advanced students working on polymer coatings or polymer surface modifications, as well as professionals across polymer science, polymer chemistry, plastics engineering, and materials science. The detailed information in this book will also be of great interest to scientists, R&D professionals, product designers and engineers who are looking to develop products with superhydrophobic coatings.
Tailor-Made Polysaccharides in Drug Delivery provides extensive details on all the vital precepts, basics and fundamental aspects of tailored polysaccharides in the pharmaceutical and biotechnological industry for understanding and developing high quality products. The book offers a comprehensive resource to understand the potential of the materials in forming new drug delivery methods. It will be useful to pharmaceutical scientists, chemical engineers, and regulatory scientists and students actively involved in pharmaceutical product and process development of tailored-made polysaccharides in drug delivery applications. The utilization of natural polymeric excipients in numerous healthcare applications demand the replacement of the synthetic polymers with the natural ones due to their biocompatibility, biodegradability, economic extraction and readily availability. The reality behind the rise in importance of these natural materials is that these sources are renewable if grown in a sustainable means and they can tender incessant supply of raw materials. Amongst these natural polymers, polysaccharides are considered as excellent excipients because of its non-toxic, stable, biodegradable properties. Several research innovations have been made on applications of polysaccharides in drug delivery.
Systems of Nanovesicular Drug Delivery provides a thorough insight into the complete and up-to-date discussions about the preparation, properties and drug delivery applications of various nanovesicles. This volume discusses cubosomes, proniosomes and niosomes, dendrimerosomes and other new and effective approaches for drug delivery. It will be a valuable title and resource for academics and pharmaceutical scientists, including industrial pharmacists, analytical scientists, health care professionals and regulatory scientists actively involved in pharmaceutical products and process development of tailor-made polysaccharides in drug delivery applications. Recently, there have been a number of outstanding nanosystems in nanovesicular carrier-forms (such as nanoemulsions, self-nanoemulsifying systems, nanoliposomes, nanotransferosomes, etc.), that have been researched and developed for efficient drug delivery by many formulators, researchers and scientists. However, no previously published books have covered all these drug delivery nanovesicles collectively in a single resource.
Applications of Nanovesicular Drug Delivery provides thorough insights and a complete and updated discussion on the preparation, properties and drug delivery applications of various nanovesicles. This volume will discuss target-specific drug application, such as ocular, transdermal, nasal, intravenous and oral delivery. This title is a valuable resource for academics, pharmaceutical scientists, including industrial pharmacists and analytical scientists, health care professionals and regulatory scientists actively involved in pharmaceutical products and process development of tailored-made polysaccharides in drug delivery applications. Recently, there have been a number of outstanding nanosystems in nanovesicular carrier-forms (such as nanoemulsions, self-nanoemulsifying systems, nanoliposomes, nanotransferosomes, etc.), that have been researched and developed for efficient drug delivery by many formulators, researchers and scientists. However, no previously published books have covered all these drug delivery nanovesicles collectively in a single resource.
Chitosan in Biomedical Applications provides a thorough insight into the complete chitosan chemistry, collection, chemical modifications, characterization and applications of chitosan in biomedical applications and healthcare fields. Chitosan, a biopolymer of natural origin, has been explored for its variety of applications in biomedical research, medical diagnostic aids and material science. It is the second most abundant natural biopolymer after cellulose, and considered as an excellent excipient because of its non-toxic, stable, biodegradable properties. Several research innovations have been made on applications of chitosan in biomedical applications. The book explores key topics, such as molecular weight, degree of deacetylation, and molecular geometry, along with an emphasis on recent advances in the field written by academic, industry, and clinical researchers. Chitosan in Biomedical Applications will be of interest to those in biomedical fields including the biomaterials and tissue engineering community investigating and developing biomaterials for biomedical applications, particularly graduate students, young faculty and others exploring chitosan-based materials.
Chitosan in Drug Delivery provides thorough insights into chitosan chemistry, collection, chemical modifications, characterization and applications in the pharmaceutical industry and healthcare fields. The book explores molecular weight, degree of deacetylation and molecular geometry, emphasizing recent advances in the field as written by academic, industry and regulatory scientists. It will be a useful resource for pharmaceutical scientists, including industrial pharmacists, analytical scientists, postgraduate students, health care professionals and regulatory scientists actively involved in pharmaceutical product and process development in natural polymers containing drug delivery.
Herbal Biomolecules in Healthcare Applications presents extensive detailed information on all the vital principles, basics and fundamental aspects of multiple herbal biomolecules in the healthcare industry. This book examines important herbal biomolecules including alkaloids, glycosides, flavonoids, anthraquinones, steroids, polysaccharides, tannins and polyphenolic compounds, terpenes, fats and waxes, proteins and peptides, and vitamins. These herbal biomacromolecules are responsible for different bioactivities as well as pharmacological potentials. A systematic understanding of the extraction, purification, characterization, applications of these herbal biomolecules and their derivatives in healthcare fields is developed in this comprehensive book. Chapters explore the key topics along with an emphasis on recent research and developments in healthcare fields by leading experts. They include updated literature review of the relevant key topics, good quality illustrations, chemical structures, flow charts, well-organized tables and case studies. Herbal Biomolecules in Healthcare Applications will be useful for researchers working on natural products and biomolecules with bioactivity and nutraceutical properties. Professionals specializing in scientific areas such as biochemistry, pharmacology, analytical chemistry, organic chemistry, clinics, or engineering focused on bioactive natural products will find this book useful.
Gellan Gum as a Biomedical Polymer details key topics and fundamental aspects of gellan gum and its biomedical applications in drug delivery, proteins and peptides delivery, cell delivery, tissue engineering, wound dressings and enzyme immobilizations in developing high quality products. Sections introduce gellan gum, its source, production and gelation mechanism, discuss biomedical materials, and provides ways it can be used for biomedical applications. The book also examines the used of gellan gum as pharmaceutical excipients for drug delivery. Future developments and challenges round out the book’s coverage. With contributions for an international group of experts, this book is a useful reference for scientists, researchers and those in industry engaged in biomedical product development using natural polysaccharides.
Tailor-Made Polysaccharides in Biomedical Applications provides extensive details on all the vital precepts, basics, and fundamental aspects of tailored polysaccharides in the pharmaceutical and biotechnological industries. This information provides readers with the foundation for understanding and developing high-quality products. The utilization of natural polymeric excipients in numerous healthcare applications demands the replacement of the synthetic polymers with natural polymers. Natural polymers are superior in terms of biocompatibility, biodegradability, economic extraction, and ready availability. Natural polymers are especially useful in that they are a renewable source of raw materials, as long as they are grown sustainably. Among these natural polymers, polysaccharides are considered as excellent excipients because they are nontoxic, stable, and biodegradable. Several research innovations have been carried out using polysaccharides in drug delivery applications. This book offers a comprehensive resource to understand the potential of these materials in forming new drug delivery methods. It will be useful to biomedical researchers, chemical engineers, regulatory scientists, and students who are actively involved in developing pharmaceutical products for biomedical applications by using tailor-made polysaccharides.
Natural Polysaccharides in Drug Delivery and Biomedical Applications provides a fundamental overview of natural polysaccharides, their sources, extraction methodologies, and characterizations. It covers specific natural polysaccharides and their effective application in drug delivery and biomedical use. Additionally, chapters in the book discuss key topics including the sources and extraction methodologies of natural polysaccharides, their role in tissue engineering applications, polysaccharide-based nanoparticles in biomedical applications, and their role in the delivery of anticancer drugs. Written by industry leaders and edited by experts, this book emphasizes recent advances made in the field. Natural Polysaccharides in Drug Delivery and Biomedical Applications provides academics, researchers, and pharmaceutical health care professionals with a comprehensive book on polysaccharides in pharmaceutical delivery process.
Natural Biopolymers for Drug Delivery thoroughly details the properties, benefits and challenges of using these biomaterials in drug delivery, with a strong focus on biocompatibility and reduction of unwanted interactions. An extensive range of natural biopolymers are explored, such as cellulose, chitosan, casein, gelatin, cashew gum, and many more. Biocompatibility, toxicity and regulatory considerations are also thoroughly discussed, ensuring the reader is fully equipped for efficient biomaterials selection and utilization in drug delivery applications. This is a must-have reference for those working in the fields of materials science, biomedical engineering, pharmaceutical science and pharmacology, chemical engineering and clinical science.
This book covers the recent innovations relating to various bioactive natural products (such as alkaloids, glycosides, flavonoids, anthraquinones, steroids, polysaccharides, tannins and polyphenolic compounds, volatile oils, fixed oils, fats and waxes, proteins and peptides, vitamins, marine products, camptothecin, piperines, carvacrol, gedunin, GABA, ginsenosides) and their applications in the pharmaceutical fields related to academic, research and industry. |
![]() ![]() You may like...
Understanding the Impact of Clergy…
Robert A. MC Mackin, Terence M. Keane, …
Hardcover
R4,482
Discovery Miles 44 820
Causal Analytics for Applied Risk…
Louis Anthony Cox Jr, Douglas A. Popken, …
Hardcover
R9,358
Discovery Miles 93 580
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R12,034
Discovery Miles 120 340
|