Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book represents the refereed proceedings of the Ninth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Warsaw (Poland) in August 2010. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance and statistics.
This book represents the refereed proceedings of the Ninth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Warsaw (Poland) in August 2010. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance and statistics.
This book deals with the computational complexity of mathematical problems for which available information is partial, noisy and priced. The author develops a general theory of computational complexity of continuous problems with noisy information and gives a number of applications; he considers deterministic as well as stochastic noise. He also presents optimal algorithms, optimal information, and complexity bounds in different settings: worst case, average case, mixed worst-average, average-worst, and asymptotic. Particular topics include: the existence of optimal linear (affine) algorithms, optimality properties of smoothing spline, regularization and least squares algorithms (with the optimal choice of the smoothing and regularization parameters), adaption versus nonadaption, and relations between different settings. The book integrates the work of researchers over the past decade in such areas as computational complexity, approximation theory, and statistics, and includes many new results as well. The author supplies two hundred exercises to increase the reader's understanding of the subject.
In this work noisy information is studied in the context of computational complexity - in other words it deals with the computational complexity of mathematical problems for which available information is partial, noisy and priced. The author develops a general theory of computational complexity of continuous problems with noisy information and gives a number of applications; deterministic as well as stochastic noise is considered. He presents optimal algorithms, optimal information, and complexity bounds in different settings: worst case, average case, mixed worst-average and average-worst, and asymptotic. Particular topics include: existence of optimal linear (affine) algorithms, optimality properties of smoothing spline, regularization and least squares algorithms (with the optimal choice of the smoothing and regularization parameters), adaption versus nonadaption, relations between different settings. The book integrates the work of researchers since the mid-1980s in such areas as computational complexity, approximation theory and statistics, and includes many new results.
|
You may like...
|