Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. The Handbook of Semidefinite Programming offers an advanced and broad overview of the current state of the field. It contains nineteen chapters written by the leading experts on the subject. The chapters are organized in three parts: Theory, Algorithms, and Applications and Extensions.
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. The Handbook of Semidefinite Programming offers an advanced and broad overview of the current state of the field. It contains nineteen chapters written by the leading experts on the subject. The chapters are organized in three parts: Theory, Algorithms, and Applications and Extensions.
This groundbreaking textbook combines straightforward explanations with a wealth of practical examples to offer an innovative approach to teaching linear algebra. Requiring no prior knowledge of the subject, it covers the aspects of linear algebra - vectors, matrices, and least squares - that are needed for engineering applications, discussing examples across data science, machine learning and artificial intelligence, signal and image processing, tomography, navigation, control, and finance. The numerous practical exercises throughout allow students to test their understanding and translate their knowledge into solving real-world problems, with lecture slides, additional computational exercises in Julia and MATLAB (R), and data sets accompanying the book online. Suitable for both one-semester and one-quarter courses, as well as self-study, this self-contained text provides beginning students with the foundation they need to progress to more advanced study.
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Chordal graphs play a central role in techniques for exploiting sparsity in large semidefinite optimization problems, and in related convex optimization problems involving sparse positive semidefinite matrices. Chordal graph properties are also fundamental to several classical results in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and nonlinear optimization. This book covers the theory and applications of chordal graphs, with an emphasis on algorithms developed in the literature on sparse Cholesky factorization. These algorithms are formulated as recursions on elimination trees, supernodal elimination trees, or clique trees associated with the graph. The best known example is the multifrontal Cholesky factorization algorithm but similar algorithms can be formulated for a variety of related problems, such as the computation of the partial inverse of a sparse positive definite matrix, positive semidefinite and Euclidean distance matrix completion problems, and the evaluation of gradients and Hessians of logarithmic barriers for cones of sparse positive semidefinite matrices and their dual cones. This monograph shows how these techniques can be applied in algorithms for sparse semidefinite optimization. It also points out the connections with related topics outside semidefinite optimization, such as probabilistic networks, matrix completion problems, and partial separability in nonlinear optimization.
|
You may like...
|