Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
There is increasing interest in the area of protective vests, either for protection against bullets or protection from the most realistic threats within domestic frontline operations: edged weapon, knives, and medical needles. This volume addresses that need. This new book provides an in-depth survey of the state-of-the-art research and practical techniques in the area of protected fabrics, especially stab-resistant and bulletproof fabrics. The book covers: * The history of protective armor: the long history of the art of protective armor manufacturing. * Materials used for body armor: the design and materials used for soft armor to increase its perforation-resistance utilizing high-performance fibers. * Anti-stab and anti-bullet armor design: the different design parameters required for the design of flexible armor in order to stop high-velocity projectiles. * The comfort of the body armor design: the flexibility, thermal resistivity, and evaporative moisture resistivity through the fabric. * Methods of testing the flexible body armors: testing the components of flexible body armor, according to the level of the protection required, such as NIJ Standards, HOSDB Body Armour Standards for UK Police, and the German SK1 Standard, among others. Written by an expert in textile composite material engineering, this volume fills an important gap in the area of protective fabric against stabbing or bullets and provides invaluable practical knowledge for body armor design.
Natural Fiber Textile Composite Engineering sheds light on the area of the natural fiber textile composites with new research on their applications, the material used, the methods of preparation, the different types of polymers, the selection of raw materials, the elements of design the natural fiber textile polymer composites for a particular end use, their manufacturing techniques, and finally their life cycle assessments (LCA). The volume also addresses the important issue in the materials science of how to utilize natural fibers as an enhancement to composite materials. Natural fiber-reinforced polymer composites have been proven to provide a combination of superior mechanical property, dielectric property, and environmental advantages such as renewability and biodegradability. Natural fibers, some from agricultural waste products, can replace existing metallic and plastic parts and help to alleviate the environmental problem of increasing amounts of agriculture residual. The book is divided into four sections, covering: applications of natural fiber polymer composites design of natural fiber polymer composites composite manufacturing techniques and agriculture waste manufacturing composite material testing methods The first section of the book deals with the application of textile composites in the industry and the properties of the natural fibers, providing an understanding of the history of natural fiber composites as well as an analysis of the different properties of different natural fibers. The second section goes on to explain the textile composites, their classification, different composite manufacturing techniques, and the different pretreatment methods for the natural fibers to be used in composite formation. It also analyzes the composite material design under different types of loading and the mechanism of failure of the natural fiber composite. The effect of the fiber volume fraction of different textile structures is explained. The third section of the book, on composite manufacturing techniques and agriculture waste manufacturing, concerns the natural fiber composite manufacturing techniques, agricultural waste, and the methods of their preparation to be used successfully in the composite, either in the form of fibers particles or nanoparticles. The book then considers the testing methods of the different composite components as well as the final composite materials, giving the principle of the testing standards, either distractive or nondestructive. This book attempts to fill the gap between the role of the textile engineer and the role of the designer of composites from natural fibers. It provides important information on the application of textile composites for textile engineers, materials engineers, and researchers in the area of composite materials.
Natural Fiber Textile Composite Engineering sheds light on the area of the natural fiber textile composites with new research on their applications, the material used, the methods of preparation, the different types of polymers, the selection of raw materials, the elements of design the natural fiber textile polymer composites for a particular end use, their manufacturing techniques, and finally their life cycle assessments (LCA). The volume also addresses the important issue in the materials science of how to utilize natural fibers as an enhancement to composite materials. Natural fiber-reinforced polymer composites have been proven to provide a combination of superior mechanical property, dielectric property, and environmental advantages such as renewability and biodegradability. Natural fibers, some from agricultural waste products, can replace existing metallic and plastic parts and help to alleviate the environmental problem of increasing amounts of agriculture residual. The book is divided into four sections, covering: applications of natural fiber polymer composites design of natural fiber polymer composites composite manufacturing techniques and agriculture waste manufacturing composite material testing methods The first section of the book deals with the application of textile composites in the industry and the properties of the natural fibers, providing an understanding of the history of natural fiber composites as well as an analysis of the different properties of different natural fibers. The second section goes on to explain the textile composites, their classification, different composite manufacturing techniques, and the different pretreatment methods for the natural fibers to be used in composite formation. It also analyzes the composite material design under different types of loading and the mechanism of failure of the natural fiber composite. The effect of the fiber volume fraction of different textile structures is explained. The third section of the book, on composite manufacturing techniques and agriculture waste manufacturing, concerns the natural fiber composite manufacturing techniques, agricultural waste, and the methods of their preparation to be used successfully in the composite, either in the form of fibers particles or nanoparticles. The book then considers the testing methods of the different composite components as well as the final composite materials, giving the principle of the testing standards, either distractive or nondestructive. This book attempts to fill the gap between the role of the textile engineer and the role of the designer of composites from natural fibers. It provides important information on the application of textile composites for textile engineers, materials engineers, and researchers in the area of composite materials.
There is increasing interest in the area of protective vests, either for protection against bullets or protection from the most realistic threats within domestic frontline operations: edged weapon, knives, and medical needles. This volume addresses that need. This new book provides an in-depth survey of the state-of-the-art research and practical techniques in the area of protected fabrics, especially stab-resistant and bulletproof fabrics. The book covers: * The history of protective armor: the long history of the art of protective armor manufacturing. * Materials used for body armor: the design and materials used for soft armor to increase its perforation-resistance utilizing high-performance fibers. * Anti-stab and anti-bullet armor design: the different design parameters required for the design of flexible armor in order to stop high-velocity projectiles. * The comfort of the body armor design: the flexibility, thermal resistivity, and evaporative moisture resistivity through the fabric. * Methods of testing the flexible body armors: testing the components of flexible body armor, according to the level of the protection required, such as NIJ Standards, HOSDB Body Armour Standards for UK Police, and the German SK1 Standard, among others. Written by an expert in textile composite material engineering, this volume fills an important gap in the area of protective fabric against stabbing or bullets and provides invaluable practical knowledge for body armor design.
|
You may like...
|