0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences (Hardcover, 2009 ed.): T.A.... Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences (Hardcover, 2009 ed.)
T.A. Ezquerra, MariCruz Garcia-Gutierrez, Aurora Nogales, Marian Gomez
R1,524 Discovery Miles 15 240 Ships in 10 - 15 working days

In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.

Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences (Paperback, Softcover reprint of... Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences (Paperback, Softcover reprint of hardcover 1st ed. 2009)
T.A. Ezquerra, MariCruz Garcia-Gutierrez, Aurora Nogales, Marian Gomez
R1,492 Discovery Miles 14 920 Ships in 10 - 15 working days

In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids, softcondensed matter, andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffractio

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Lutheran Difference - Reformation…
Edward Engelbrecht Hardcover R1,333 Discovery Miles 13 330
A Serious Call to a Devout and Holy…
William Law Paperback R618 Discovery Miles 6 180
Fifteen Sermons Preached at the Rolls…
Joseph Butler Paperback R499 Discovery Miles 4 990
Holiness - Its Nature, Hindrances…
J.C. Ryle Hardcover R568 Discovery Miles 5 680
How to be an Anglican - A Beginner's…
Richard Giles Hardcover R699 Discovery Miles 6 990
Marquart's Works - Christendom
Herman J. Otten Hardcover R532 R450 Discovery Miles 4 500
The Collected Works of H. Evan Runner…
H. Evan Runner Hardcover R742 R659 Discovery Miles 6 590
Starck's Prayer Book
Johann Friedrich Starck Hardcover R933 Discovery Miles 9 330
The Heart of John Wesley's Journal
John Wesley Paperback R390 Discovery Miles 3 900
The Early History of the Lutheran Church…
Hermann Winde Hardcover R1,060 Discovery Miles 10 600

 

Partners