|
Showing 1 - 9 of
9 matches in All Departments
This book presents the basic concepts of calculus and its relevance
to real-world problems, covering the standard topics in their
conventional order. By focusing on applications, it allows readers
to view mathematics in a practical and relevant setting. Organized
into 12 chapters, this book includes numerous interesting, relevant
and up-to date applications that are drawn from the fields of
business, economics, social and behavioural sciences, life
sciences, physical sciences, and other fields of general interest.
It also features MATLAB, which is used to solve a number of
problems. The book is ideal as a first course in calculus for
mathematics and engineering students. It is also useful for
students of other sciences who are interested in learning calculus.
This monograph contributes to the mathematical analysis of systems
exhibiting hysteresis effects and phase transitions. Its main part
begins with a detailed study of models for scalar rate independent
hysteresis in the form of hysteresis operators. Applications to
ferromagnetism, elastoplasticity and fatigue analysis are
presented, and two representative distributed systems with
hysteresis operator are discussed. The attention then shifts to the
mechanisms of energy dissipation and transformation that induce a
hysteretic behavior in continuous media undergoing phase
transitions. After an introduction to phenomenological
thermodynamic theories of phase transitions, in particular, the
Landau-Ginzburg theory and phase field models, several specific
models are discussed in detail. These include Falk's model for the
hysteresis in shape memory alloys and the phase field models due to
Caginalp and Penrose-Fife. The latter are studied both for
conserved and non-conserved order parameters. A chapter presenting
a mathematical model for the austenite-pearlite and
austenite-martensite phase transitions in eutectoid carbon steels
concludes the book.
Hysteresis is an exciting and mathematically challenging phenomenon
that oc curs in rather different situations: jt, can be a byproduct
offundamental physical mechanisms (such as phase transitions) or
the consequence of a degradation or imperfection (like the play in
a mechanical system), or it is built deliberately into a system in
order to monitor its behaviour, as in the case of the heat control
via thermostats. The delicate interplay between memory effects and
the occurrence of hys teresis loops has the effect that hysteresis
is a genuinely nonlinear phenomenon which is usually non-smooth and
thus not easy to treat mathematically. Hence it was only in the
early seventies that the group of Russian scientists around M. A.
Krasnoselskii initiated a systematic mathematical investigation of
the phenomenon of hysteresis which culminated in the fundamental
monograph Krasnoselskii-Pokrovskii (1983). In the meantime, many
mathematicians have contributed to the mathematical theory, and the
important monographs of 1. Mayergoyz (1991) and A. Visintin (1994a)
have appeared. We came into contact with the notion of hysteresis
around the year 1980."
This book presents the basic concepts of calculus and its relevance
to real-world problems, covering the standard topics in their
conventional order. By focusing on applications, it allows readers
to view mathematics in a practical and relevant setting. Organized
into 12 chapters, this book includes numerous interesting, relevant
and up-to date applications that are drawn from the fields of
business, economics, social and behavioural sciences, life
sciences, physical sciences, and other fields of general interest.
It also features MATLAB, which is used to solve a number of
problems. The book is ideal as a first course in calculus for
mathematics and engineering students. It is also useful for
students of other sciences who are interested in learning calculus.
The Lebesgue integral is an essential tool in the fields of
analysis and stochastics and for this reason, in many areas where
mathematics is applied. This textbook is a concise, lecture-tested
introduction to measure and integration theory. It addresses the
important topics of this theory and presents additional results
which establish connections to other areas of mathematics. The
arrangement of the material should allow the adoption of this
textbook in differently composed Bachelor programmes.
Ziel dieses Lehrbuchs ist es, das Material des ersten Semesters
eines Vorlesungszyklus zur Analysis prägnant und verständlich
darzustellen und darüber hinaus Ausblicke und Ergänzungen zu
geben, die den Stoff lebendig werden lassen. Besonderer Wert
wird auf die Motivation der zu behandelnden Themen gelegt. Zu
Beginn des Buchs wird die mathematische Denkweise, insbesondere
Beweistechniken und axiomatisches Vorgehen, ausführlich
eingeführt. Dieses Buch basiert auf Vorlesungen, die regelmäßig
und seit vielen Jahren an der TU München abgehalten
werden. Zahlreiche Abbildungen veranschaulichen die
behandelten Konzepte und Ideen. Zudem ermöglicht dieses Lehrbuch
den Zugriff auf mehr als 250 interaktive Aufgaben in der Springer
Nature Flashcards-App, mit denen Wissen und Verständnis
überprüft werden kann – hervorragend geeignet auch zur
Prüfungsvorbereitung.
Dieses vierfarbige Lehrbuch wendet sich an Studierende der
Mathematik in Bachelor-Studiengangen. Es bietet in einem Band ein
lebendiges Bild der mathematischen Inhalte, die ublicherweise im
zweiten und dritten Studienjahr behandelt werden (mit Ausnahme der
Algebra). Mathematik-Studierende finden wichtige Begriffe, Satze
und Beweise ausfuhrlich und mit vielen Beispielen erklart und
werden an grundlegende Konzepte und Methoden herangefuhrt. Im
Mittelpunkt stehen das Verstandnis der mathematischen Zusammenhange
und des Aufbaus der Theorie sowie die Strukturen und Ideen
wichtiger Satze und Beweise. Es wird nicht nur ein in sich
geschlossenes Theoriengebaude dargestellt, sondern auch
verdeutlicht, wie es entsteht und wozu die Inhalte spater benoetigt
werden. Herausragende Merkmale sind: durchgangig vierfarbiges
Layout mit mehr als 350 Abbildungen pragnant formulierte
Kerngedanken bilden die Abschnittsuberschriften Selbsttests in
kurzen Abstanden ermoeglichen Lernkontrollen wahrend des Lesens
farbige Merkkasten heben das Wichtigste hervor
"Unter-der-Lupe"-Boxen zoomen in Beweise hinein, motivieren und
erklaren Details "Hintergrund-und-Ausblick"-Boxen stellen
Zusammenhange zu anderen Gebieten und weiterfuhrenden Themen her
Zusammenfassungen zu jedem Kapitel sowie UEbersichtsboxen mehr als
500 Verstandnisfragen, Rechenaufgaben und Aufgaben zu Beweisen Der
inhaltliche Schwerpunkt liegt auf dem weiteren Ausbau der Analysis
sowie auf den Themen der Vorlesungen Numerik sowie
Wahrscheinlichkeitstheorie und Statistik. Behandelt werden daruber
hinaus Inhalte und Methodenkompetenzen, die vielerorts im zweiten
und dritten Studienjahr der Mathematikausbildung vermittelt werden.
Auf der Website zum Buch Matheweb finden Sie Hinweise, Loesungswege
und Ergebnisse zu allen Aufgaben die Moeglichkeit, zu den Kapiteln
Fragen zu stellen Das Buch wird allen Studierenden der Mathematik
ein verlasslicher Begleiter sein.
This volume constitutes the proceedings of a mathematical
conference on functional analysis and its applications. The
conference brought together mathematicians and other scientists
from four continents, including the developing countries, in order
to gather and disseminate up-to-date research in functional
analysis with a spectrum as broad as possible, ranging from topics
in classical functional analysis to various areas of numerical and
applied mathematics. These topics include: topological vector
spaces; Banach algebras; meromorphic functions; partial
differential equations; and variational equations and inequalities;
optimization; wavelets; elasoplasticity; numerical integration;
fractal image compression; reservoir simulation; forest management;
and industrial mathematics.
|
You may like...
Wonka
Timothee Chalamet
Blu-ray disc
R250
Discovery Miles 2 500
|