Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics - and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes. The restriction to 40 years is of marginal significance, since most mathematicians have made their mark long before this age.A list of Fields Medallists and their contributions provides a bird's eye view of mathematics over the past 60 years. It highlights the areas in which, at various times, greatest progress has been made. This volume does not pretend to be comprehensive, nor is it a historical document. On the other hand, it presents contributions from 22 Fields Medallists and so provides a highly interesting and varied picture.The contributions themselves represent the choice of the individual Medallists. In some cases the articles relate directly to the work for which the Fields Medals were awarded. In other cases new articles have been produced which relate to more current interests of the Medallists. This indicates that while Fields Medallists must be under 40 at the time of the award, their mathematical development goes well past this age. In fact the age limit of 40 was chosen so that young mathematicians would be encouraged in their future work.The Fields Medallists' Lectures is now available on CD-ROM. Sections can be accessed at the touch of a button, and similar topics grouped together using advanced keyword searches.
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics - and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes. The restriction to 40 years is of marginal significance, since most mathematicians have made their mark long before this age.A list of Fields Medallists and their contributions provides a bird's eye view of mathematics over the past 60 years. It highlights the areas in which, at various times, greatest progress has been made. This volume does not pretend to be comprehensive, nor is it a historical document. On the other hand, it presents contributions from 22 Fields Medallists and so provides a highly interesting and varied picture.The contributions themselves represent the choice of the individual Medallists. In some cases the articles relate directly to the work for which the Fields Medals were awarded. In other cases new articles have been produced which relate to more current interests of the Medallists. This indicates that while Fields Medallists must be under 40 at the time of the award, their mathematical development goes well past this age. In fact the age limit of 40 was chosen so that young mathematicians would be encouraged in their future work.The Fields Medallists' Lectures is now available on CD-ROM. Sections can be accessed at the touch of a button, and similar topics grouped together using advanced keyword searches.
This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics. The medal is awarded to the best mathematicians who are 40 or younger, every four years.A list of Fields Medallists and their contributions provides a bird's-eye view of the major developments in mathematics over the past 80 years. It highlights the areas in which, at various times, the greatest progress has been made.The third edition of Fields Medallists' Lectures features additional contributions from: John W Milnor (1962), Enrico Bombieri (1974), Gerd Faltings (1986), Andrei Okounkov (2006), Terence Tao (2006), Cedric Villani (2010), Elon Lindenstrauss (2010), Ngo Bao Chau (2010), Stanislav Smirnov (2010).
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics. The medal is awarded to the best mathematicians who are 40 or younger, every four years.A list of Fields Medallists and their contributions provides a bird's-eye view of the major developments in mathematics over the past 80 years. It highlights the areas in which, at various times, the greatest progress has been made.The third edition of Fields Medallists' Lectures features additional contributions from: John W Milnor (1962), Enrico Bombieri (1974), Gerd Faltings (1986), Andrei Okounkov (2006), Terence Tao (2006), Cedric Villani (2010), Elon Lindenstrauss (2010), Ngo Bao Chau (2010), Stanislav Smirnov (2010).
This book is designed to be read by students who have had a first elementary course in general algebra. It provides a common generalization of the primes of arithmetic and the points of geometry. The book explains the various elementary operations which can be performed on ideals.
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.
Certain nonlinear optimization problems arise in such areas as the theory of computation, pure and applied probability, and mathematical physics. These problems can be solved through linear methods, providing the usual number system is replaced with one that satisfies the idempotent law. Only recently has a systematic study of idempotency analysis emerged, triggered in part by a workshop organized by Hewlett-Packard's Basic Research Institute in the Mathematical Sciences (BRIMS), which brought together for the first time many leading researchers in the area. This volume, a record of that workshop, includes a variety of contributions, a broad introduction to idempotency, written especially for the book, and a bibliography of the subject. It is the most up-to-date survey currently available of research in this developing area of mathematics; the articles cover both practical and more theoretical considerations, making it essential reading for all workers in the area.
Certain nonlinear optimization problems arise in such areas as the theory of computation, pure and applied probability, and mathematical physics. These problems can be solved through linear methods, providing the usual number system is replaced with one that satisfies the idempotent law. Only recently has a systematic study of idempotency analysis emerged, triggered in part by a workshop organized by Hewlett-Packard's Basic Research Institute in the Mathematical Sciences (BRIMS), which brought together for the first time many leading researchers in the area. This volume, a record of that workshop, includes a variety of contributions, a broad introduction to idempotency, written especially for the book, and a bibliography of the subject. It is the most up-to-date survey currently available of research in this developing area of mathematics; the articles cover both practical and more theoretical considerations, making it essential reading for all workers in the area.
Deals with an area of research that lies at the crossroads of mathematics and physics. The material presented here rests primarily on the pioneering work of Vaughan Jones and Edward Witten relating polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions. Professor Atiyah presents an introduction to Witten's ideas from the mathematical point of view. The book will be essential reading for all geometers and gauge theorists as an exposition of new and interesting ideas in a rapidly developing area.
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.
Professor Atiyah is one of the greatest living mathematicians and
is well known throughout the mathematical world. He is a recipient
of the Fields Medal, the mathematical equivalent of the Nobel
Prize, and is still at the peak of his career. His huge number of
published papers, focusing on the areas of algebraic geometry and
topology, have here been collected into six volumes, divided
thematically for easy reference by individuals interested in a
particular subject.
This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. These papers, covering the years 1959-62, consist mainly of Michael Atiyah's joint papers with F. Hirzebruch on K-Theory.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. From 1977 onwards his interest moved in the direction of gauge theories and the interaction between geometry and physics.
Professor Atiyah is one of the greatest living mathematicians and is renowned in the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still actively involved in the mathematics community. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into seven volumes, with the first five volumes divided thematically and the sixth and seventh arranged by date. This seventh volume in Michael Atiyah's Collected Works contains a selection of his publications between 2002 and 2013, including his work on skyrmions; K-theory and cohomology; geometric models of matter; curvature, cones and characteristic numbers; and reflections on the work of Riemann, Einstein and Bott.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|