![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.
This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems.
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.
|
![]() ![]() You may like...
Mission Impossible 6: Fallout
Not available
Tom Cruise, Henry Cavill, …
Blu-ray disc
![]()
|