Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.
Quadrature domains were singled out about 30 years ago by D. Aharonov and H.S. Shapiro in connection with an extremal problem in function theory. Since then, a series of coincidental discoveries put this class of planar domains at the center of crossroads of several quite independent mathematical theories, e.g., potential theory, Riemann surfaces, inverse problems, holomorphic partial differential equations, fluid mechanics, operator theory. The volume is devoted to recent advances in the theory of quadrature domains, illustrating well the multi-facet aspects of their nature. The book contains a large collection of open problems pertaining to the general theme of quadrature domains.
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, classical results from the cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. It has also been used to give in sights into new developments in the spectral theory of linear operators. Various concepts from function theory and complex analytic geometry are drawn together and used to give a new approach to concrete spectral computations. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas which should stimulate further research.
The Christoffel-Darboux kernel, a central object in approximation theory, is shown to have many potential uses in modern data analysis, including applications in machine learning. This is the first book to offer a rapid introduction to the subject, illustrating the surprising effectiveness of a simple tool. Bridging the gap between classical mathematics and current evolving research, the authors present the topic in detail and follow a heuristic, example-based approach, assuming only a basic background in functional analysis, probability and some elementary notions of algebraic geometry. They cover new results in both pure and applied mathematics and introduce techniques that have a wide range of potential impacts on modern quantitative and qualitative science. Comprehensive notes provide historical background, discuss advanced concepts and give detailed bibliographical references. Researchers and graduate students in mathematics, statistics, engineering or economics will find new perspectives on traditional themes, along with challenging open problems.
This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity andthe geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage."
The present lectures are based on a course deli vered by the authors at the Uni versi ty of Bucharest, in the winter semester 1985-1986. Without aiming at completeness, the topics selected cover all the major questions concerning hyponormal operators. Our main purpose is to provide the reader with a straightforward access to an active field of research which is strongly related to the spectral and perturbation theories of Hilbert space operators, singular integral equations and scattering theory. We have in view an audience composed especially of experts in operator theory or integral equations, mathematical physicists and graduate students. The book is intended as a reference for the basic results on hyponormal operators, but has the structure of a textbook. Parts of it can also be used as a second year graduate course. As prerequisites the reader is supposed to be acquainted with the basic principles of functional analysis and operator theory as covered for instance by Reed and Simon [1]. A t several stages of preparation of the manuscript we were pleased to benefit from proper comments made by our cOlleagues: Grigore Arsene, Tiberiu Constantinescu, Raul Curto, Jan Janas, Bebe Prunaru, Florin Radulescu, Khrysztof Rudol, Konrad Schmudgen, Florian-Horia Vasilescu. We warmly thank them all. We are indebted to Professor Israel Gohberg, the editor of this series, for his constant encouragement and his valuable mathematical advice. We wish to thank Mr. Benno Zimmermann, the Mathematics Editor at Birkhauser Verlag, for cooperation and assistance during the preparation of the manuscript.
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|