Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book collects the most significant contributions of the outstanding Czech mathematician Jind ich Ne as, who was honoured with the Order of Merit of the Czech Republic by President Vaclav Havel. Starting with Ne as s brief biography and short comments on his role in the beginnings of modern PDE research in Prague, the book then follows the periods of his research career. The first part is devoted to the linear theory of partial differential equations. Its topics include the variational approach to linear boundary value problems and the Rellich - Ne as inequalities, together with their applications to boundary regularity. The second part is concerned with the regularity for nonlinear elliptic systems, which are related to Hilbert s 19th and 20th problems. The third part focuses on Nonlinear Functional Analysis and its applications to non-linear PDEs, while the last part deals with topics in the mathematical theory of various models in Continuum Mechanics, including elasticity and plasticity, the Navier-Stokes equations, transonic flows, and multipolar fluids. The editorial contributions were written by: I. Babu ka, P. Ciarlet, P. Drabek, M. Feistauer, I. Hlava ek, J. Jaru ek, O. John, J. Kristensen, A. Kufner, J. Malek, G. Mingione, . Ne asova, M. Pokorny, P. Quittner, T. Roubi ek, G. Seregin and J. Stara."
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution - by exploring in detail the "synergy" of analytical and numerical methods - the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications * Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime * Geometric and diffractive optics, including wave interactions Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable
The book presents recent results and new trends in the theory of fluid mechanics. Each of the four chapters focuses on a different problem in fluid flow accompanied by an overview of available older results. The chapters are extended lecture notes from the ESSAM school "Mathematical Aspects of Fluid Flows" held in Kacov (Czech Republic) in May/June 2017. The lectures were presented by Dominic Breit (Heriot-Watt University Edinburgh), Yann Brenier (Ecole Polytechnique, Palaiseau), Pierre-Emmanuel Jabin (University of Maryland) and Christian Rohde (Universitat Stuttgart), and cover various aspects of mathematical fluid mechanics - from Euler equations, compressible Navier-Stokes equations and stochastic equations in fluid mechanics to equations describing two-phase flow; from the modeling and mathematical analysis of equations to numerical methods. Although the chapters feature relatively recent results, they are presented in a form accessible to PhD students in the field of mathematical fluid mechanics.
The material collected in this volume discusses the present as well
as expected future directions of development of the field with
particular emphasis on applications. The seven survey articles
present different topics in Evolutionary PDE s, written by leading
experts.
|
You may like...
|