Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 37 covers literature published from July 2004 to June 2007. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Ever since the oil crisis of 1973, researchers in various fields of chemistry have proposed various schemes to conserve energy, as well to convert the sun's abundant and limitless supply of energy to produce chemical fuels (e. g. , hydrogen from water, . *. ). The enthusiasm had no previous parallel in the mid-1970's. Unfortunately, despite the several good proposals, the results have proven - in retrospect - somewhat disappointing from an economic viable point of view. The reasons for the meagre results are manyfold not the least of which are the experimental difficulties encountered in storage systems. Moreover, the lack of a concerted, well orchestrated interdisciplinary approach has been significant. By contrast, the chemical advances made in the understanding of the processes involved in such schemes have been phenomenal. A recent book on this issue ( M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1983) is witness to the various efforts and approaches taken by researchers. In the recent years, many more groups have joined in these efforts, and the number of papers in the lit~rature is staggering ! One of the motives for organizing this NATO Advanced Research Workshop stemmed from our view that it was time to take stock of the accomplishments and rather than propose new schemes, it was time to consider seriously avenues that are most promising.
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
Ever since the oil crisis of 1973, researchers in various fields of chemistry have proposed various schemes to conserve energy, as well to convert the sun's abundant and limitless supply of energy to produce chemical fuels (e. g. , hydrogen from water, . *. ). The enthusiasm had no previous parallel in the mid-1970's. Unfortunately, despite the several good proposals, the results have proven - in retrospect - somewhat disappointing from an economic viable point of view. The reasons for the meagre results are manyfold not the least of which are the experimental difficulties encountered in storage systems. Moreover, the lack of a concerted, well orchestrated interdisciplinary approach has been significant. By contrast, the chemical advances made in the understanding of the processes involved in such schemes have been phenomenal. A recent book on this issue ( M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1983) is witness to the various efforts and approaches taken by researchers. In the recent years, many more groups have joined in these efforts, and the number of papers in the lit~rature is staggering ! One of the motives for organizing this NATO Advanced Research Workshop stemmed from our view that it was time to take stock of the accomplishments and rather than propose new schemes, it was time to consider seriously avenues that are most promising.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
Many people are convinced that, among other courses taught in schools, chemistry is a difficult and complex subject. This view is often arrived at without justification. Setting out to introduce chemistry concepts and demystify chemistry, this book shows how it is a major part of our everyday lives. It introduces the readers into the wonderful world of atoms and molecules and chemical reactions whilst showing that chemistry is centrally important but also an emerging science and defines what the practising chemist does. The book also examines curiosity, creativity, fascination, poetry, beauty, and ethics in science. Originally published in Italian, 'Chimica - leggere e scrivere il libro della Natura' was among the finalists of the 2013 Italian Award for popularization of science. The English translation has been sensitively delivered to explain concepts in simple language and emphasize the positive role that chemistry can play to shape our future.
|
You may like...
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R861
Discovery Miles 8 610
The Big Con - How The Consulting…
Mariana Mazzucato, Rosie Collington
Paperback
|