Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
1 Reliability: Past, Present, Future.- 2 Reliability Analysis as a Tool for Expressing and Communicating Uncertainty.- 3 Modeling a Process of Non-Ideal Repair.- 4 Some Models and Mathematical Results for Reliability of Systems of Components.- 5 Algorithms of Stochastic Activity and Problems of Reliability.- 6 Some Shifted Stochastic Orders.- 7 Characterization of Distributions in Reliability.- 8 Asymptotic Analysis of Reliability for Switching Systems in Light and Heavy Traffic Conditions.- 9 Nonlinearly Perturbed Markov Chains and Large Deviations for Lifetime Functionals.- 10 Evolutionary Systems in an Asymptotic Split Phase Space.- 11 An Asymptotic Approach to Multistate Systems Reliability Evaluation.- 12 Computer Intensive Methods Based on Resampling in Analysis of Reliability and Survival Data.- 13 Statistical Analysis of Damage Processes.- 14 Data Analysis Based on Warranty Database.- 15 Failure Models Indexed by Time and Usage.- 16 A New Multiple Proof Loads Approach For Estimating Correlations.- 17 Conditional and Partial Correlation For Graphical Uncertainty Models.- 18 Semiparametric Methods of Time Scale Selection.- 19 Censored and Truncated Lifetime Data.- 20 Tests for a Family of Survival Models Based on Extremes.- 21 Software Reliability Models - Past, Present and Future.- 22 Dynamic Analysis of Failures in Repairable Systems and Software.- 23 Precedence Test and Maximal Precedence Test.- 24 Hierarchical Bayesian Inference in Related Reliability Experiments.- 25 Tests for Equality of Intensities of Failures of a Repairable System Under Two Competing Risks.- 26 Semiparametric Estimation in Accelerated Life Testing.- 27 A Theoretical Framework for Accelerated Testing.- 28 Unbiased Estimation in Reliability and Similar Problems.- 29 Prediction Under Association.- 30 Uniform Limit Laws for Kernel Density Estimators on Possibly Unbounded Intervals.- 31 A Weak Convergence Result Relevant in Recurrent and Renewal Models.
This volume consists of twenty-four papers selected by the editors from the sixty-one papers presented at the 1st International Conference on Mathemati cal Methods in Reliability held at the Politehnica University of Bucharest from 16 to 19 September 1997. The papers have been divided into three sections: statistical methods, probabilistic methods, and special techniques and appli cations. Of course, as with any classification, some papers could be as well assigned to other sections. Problems in reliability are encountered in items in everyday usage. Relia bility is an important feature of household appliances, cars, telephones, power supplies, and so on, whether viewed from the vantage of the producer or the consumer. Important decisions are based on the reliability of the product. Obtaining systems that perform adequately for a specified period of time in a given environment is an important goal for both government and industry. Hence study and use of reliability theory, which can be applied in the research, development, and production phases of a system to enable the user to evaluate and improve performance, is a worthwhile venture. If reliability theory is to be useful, it must be quantitative in nature, because reliability must be demonstra ble. Subsequently probability and statistics, among others, play an important part in its development."
This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984: to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "discovered" in portfolio theory enlarging so the fundamental model of Markowitz."
This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.
Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis and related fields. Specific topics covered include: * non-parametric estimation of lifetimes of subjects exposed to radiation * statistical analysis of simultaneous degradation-mortality data with covariates of the aged * estimation of maintenance efficiency in semiparametric imperfect repair models * cancer prognosis using survival forests * short-term health problems related to air pollution: analysis using semiparametric generalized additive models * parametric models in accelerated life testing and fuzzy data * semiparametric models in the studies of aging and longevity This book will be of use as a reference text for general statisticians, theoreticians, graduate students, reliability engineers, health researchers, and biostatisticians working in applied probability and statistics.
This volume dedicated to William Q. Meeker on the occasion of his sixtieth birthday is a collection of invited chapters covering recent advances in accelerated life testing and degradation models. The book covers a wide range of applications to areas such as reliability, quality control, the health sciences, economics and finance. Additional topics covered include accelerated testing and inference, step-stress testing and inference, nonparametric inference, model validity in accelerated testing, the point process approach, bootstrap methods in degradation analysis, exact inferential methods in reliability, dynamic perturbed systems, and degradation models in statistics. Advances in Degradation Modeling is an excellent reference for researchers and practitioners in applied probability and statistics, industrial statistics, the health sciences, quality control, economics, and finance.
Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. "Applied Nonparametric Statistics in Reliability" is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB(R). A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. "Applied Nonparametric Statistics in Reliability" will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled Modern Stochastics: Theory and Applications III, held on September 10 14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security."
This textbook presents the basics of probability and statistical estimation, with a view to applications. The didactic presentation follows a path of increasing complexity with a constant concern for pedagogy, from the most classical formulas of probability theory to the asymptotics of independent random sequences and an introduction to inferential statistics. The necessary basics on measure theory are included to ensure the book is self-contained. Illustrations are provided from many applied fields, including information theory and reliability theory. Numerous examples and exercises in each chapter, all with solutions, add to the main content of the book. Written in an accessible yet rigorous style, the book is addressed to advanced undergraduate students in mathematics and graduate students in applied mathematics and statistics. It will also appeal to students and researchers in other disciplines, including computer science, engineering, biology, physics and economics, who are interested in a pragmatic introduction to the probability modeling of random phenomena.
This book deals with the mathematical aspects of survival analysis and reliability as well as other topics, reflecting recent developments in the following areas: applications in epidemiology; probabilistic and statistical models and methods in reliability; models and methods in survival analysis, longevity, aging, and degradation; accelerated life models; quality of life; new statistical challenges in genomics. The work will be useful to a broad interdisciplinary readership of researchers and practitioners in applied probability and statistics, industrial statistics, biomedicine, biostatistics, and engineering.
This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled "Modern Stochastics: Theory and Applications III," held on September 10 -14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB (R). A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
This volume consists of twenty-four papers selected by the editors from the sixty-one papers presented at the 1st International Conference on Mathemati cal Methods in Reliability held at the Politehnica University of Bucharest from 16 to 19 September 1997. The papers have been divided into three sections: statistical methods, probabilistic methods, and special techniques and appli cations. Of course, as with any classification, some papers could be as well assigned to other sections. Problems in reliability are encountered in items in everyday usage. Relia bility is an important feature of household appliances, cars, telephones, power supplies, and so on, whether viewed from the vantage of the producer or the consumer. Important decisions are based on the reliability of the product. Obtaining systems that perform adequately for a specified period of time in a given environment is an important goal for both government and industry. Hence study and use of reliability theory, which can be applied in the research, development, and production phases of a system to enable the user to evaluate and improve performance, is a worthwhile venture. If reliability theory is to be useful, it must be quantitative in nature, because reliability must be demonstra ble. Subsequently probability and statistics, among others, play an important part in its development."
This textbook presents the basics of probability and statistical estimation, with a view to applications. The didactic presentation follows a path of increasing complexity with a constant concern for pedagogy, from the most classical formulas of probability theory to the asymptotics of independent random sequences and an introduction to inferential statistics. The necessary basics on measure theory are included to ensure the book is self-contained. Illustrations are provided from many applied fields, including information theory and reliability theory. Numerous examples and exercises in each chapter, all with solutions, add to the main content of the book. Written in an accessible yet rigorous style, the book is addressed to advanced undergraduate students in mathematics and graduate students in applied mathematics and statistics. It will also appeal to students and researchers in other disciplines, including computer science, engineering, biology, physics and economics, who are interested in a pragmatic introduction to the probability modeling of random phenomena.
This book extends the theory and applications of random evolutions to semi-Markov random media in discrete time, essentially focusing on semi-Markov chains as switching or driving processes. After giving the definitions of discrete-time semi-Markov chains and random evolutions, it presents the asymptotic theory in a functional setting, including weak convergence results in the series scheme, and their extensions in some additional directions, including reduced random media, controlled processes, and optimal stopping. Finally, applications of discrete-time semi-Markov random evolutions in epidemiology and financial mathematics are discussed. This book will be of interest to researchers and graduate students in applied mathematics and statistics, and other disciplines, including engineering, epidemiology, finance and economics, who are concerned with stochastic models of systems.
Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields. Specific topics covered include: * cancer prognosis using survival forests * short-term health problems related to air pollution: analysis using semiparametric generalized additive models * semiparametric models in the studies of aging and longevity This book will be of use as a reference text for general statisticians, theoreticians, graduate students, reliability engineers, health researchers, and biostatisticians working in applied probability and statistics.
This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984: to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "discovered" in portfolio theory enlarging so the fundamental model of Markowitz."
Here is a work that adds much to the sum of our knowledge in a key area of science today. It is concerned with the estimation of discrete-time semi-Markov and hidden semi-Markov processes. A unique feature of the book is the use of discrete time, especially useful in some specific applications where the time scale is intrinsically discrete. The models presented in the book are specifically adapted to reliability studies and DNA analysis. The book is mainly intended for applied probabilists and statisticians interested in semi-Markov chains theory, reliability and DNA analysis, and for theoretical oriented reliability and bioinformatics engineers.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
|