Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
6.1.1. Auswahl-und Anordnungsprobleme Die Aufgaben der Kombinatorik lassen sich von Auswahl- oder Anordnungs problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewahlten Ele menten einer endlichen Menge wichtig. Diese Elemente konnen Zahlen, Buchstaben, Personen, Gegenstande, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel mit a1' a2' ..., an bezeichnen. Dabei wird zu beachten sein, dass verschiedene Elemente auch durch verschiedene Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar gestellt werden. Zwei Zusammenstellungen sind grundsatzlich verschieden, wenn sie nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a a2 a3 1 und a1 a3 bzw. a1 a2 a3 und a1 a2 a4 jeweils voneinander verschieden. Im folgenden sollen die sechs Grundaufgaben erlautert werden, auf die sich alle Probleme der Kombinatorik im wesentlichen zuruckfuhren lassen. Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusammen stellung samtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt."
In diesem Band werden einige spezielle Funktionen dargestellt, denen man bei der Integration von Differentialgleichungen der mathematischen Physik und in den Ingenieurwissenschaften begegnet. Dabei wird dem allgemeinen Anliegen dieser Lehr buchreihe weitgehend Rechnung getragen, dass die Studierenden ihre mathematischen Kenntnisse und Fertigkeiten im Zusammenhang mit deren Anwendungen erwerben sollen. Die Theorie wird nur soweit behandelt, wie sie zum Verstandnis der physika lischen und technischen Probleme erforderlich ist. Reihenentwicklungen und Integraldarstellungen der zu beschreibenden Funk tionen, die als Losungen von Differentialgleichungen auftreten, stehen ebenfalls im Vordergrund der Betrachtungen. Von den Eigenschaften konnten nur die wichtigsten, fur praktische Erfordernisse notwendige angegeben werden. Die mathematischen Untersuchungen werden insbesondere in den Kapiteln 2 bis 5 vorwiegend im Kom plexen durchgefuhrt. Jedoch wird mit Rucksicht auf die physikalisch-technischen Anwendungen immer auf die Darstellung im Reellen bezug genommen. Die Auswahl der Funktionen wurde ebenfalls von den Anwendungsmoglichkeiten bestimmt. Das erklart insbesondere die breitere Darstellung der Besselschen und der Kugelfunk tionen. Bedingt durch diesen Grundsatz konnte daher nicht in allen Kapiteln ein einheitliches mathematisches Vorgehen eingehalten werden. Vielmehr werden die jenigen Methoden bevorzugt, die den Besonderheiten der jeweiligen Funktionen angepasst sind. Das hat andererseits den Vorteil, dass die wesentlichen Kapitel 3 und 4 unabhangig voneinander lesbar sind. Im ersten Kapitel werden einige wichtige Begriffe zu orthogonalen Funktionen systemen bereitgestellt, die zum Verstandnis der Reihenentwicklung beitragen. Dabei werden die Laguerreschen, Hermiteschen und Tschebyschewschen Polynome als Beispiele ausfUhrlicher besprochen."
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|