Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 18 of 18 matches in All Departments
This volume contains eight state of the art contributions on mathematical aspects and applications of fast boundary element methods in engineering and industry. This covers the analysis and numerics of boundary integral equations by using differential forms, preconditioning of hp boundary element methods, the application of fast boundary element methods for solving challenging problems in magnetostatics, the simulation of micro electro mechanical systems, and for contact problems in solid mechanics. Other contributions are on recent results on boundary element methods for the solution of transient problems. This book is addressed to researchers, graduate students and practitioners working on and using boundary element methods. All contributions also show the great achievements of interdisciplinary research between mathematicians and engineers, with direct applications in engineering and industry.
The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10-14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.
This volume contains eleven contributions on boundary integral equation and boundary element methods. Beside some historical and more analytical aspects in the formulation and analysis of boundary integral equations, modern fast boundary element methods are also described and analyzed from a mathematical point of view. In addition, the book presents engineering and industrial applications that show the ability of boundary element methods to solve challenging problems from different fields.
This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.
Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10-14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
This volume contains eight state of the art contributions on mathematical aspects and applications of fast boundary element methods in engineering and industry. This covers the analysis and numerics of boundary integral equations by using differential forms, preconditioning of hp boundary element methods, the application of fast boundary element methods for solving challenging problems in magnetostatics, the simulation of micro electro mechanical systems, and for contact problems in solid mechanics. Other contributions are on recent results on boundary element methods for the solution of transient problems. This book is addressed to researchers, graduate students and practitioners working on and using boundary element methods. All contributions also show the great achievements of interdisciplinary research between mathematicians and engineers, with direct applications in engineering and industry.
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations. The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation. The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.
Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems either by finite or boundary element methods, the global problem is reduced to an operator equation on the skeleton of the domain decomposition. Different variational formulations then lead to hybrid domain decomposition methods.
Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.
Diese dreisemestrige Einfuhrung in die Analysis behandelt die Integral- und Differentialrechnung einer und mehrerer Veranderlicher. Daran anschliessend werden analytische und einfache numerische Verfahren zur Loesung gewoehnlicher Differentialgleichungen besprochen. Der letzte Teil ist Methoden der komplexen Funktionentheorie gewidmet. Zentrales Anliegen dieses Lehrbuches sind die Entwicklung und Anwendung von praktischen Methoden zur Loesung mathematischer Aufgaben sowie die Konstruktion dieser Loesungen.
Fur die naherungsweise Losung von Randwertproblemen zweiter Ordnung
wird eine einheitliche Theorie der Finiten Elemente Methode und der
Randelementmethode prasentiert. Neben der Stabilitats- und
Fehleranalysis wird vor allem auf effiziente Losungsverfahren
eingegangen. Fur die Diskretisierung der auftretenden
Die Simulation technischer Prozesse erfordert in der Regel die Loesung von linearen Gleichungssystemen grosser Dimension. Hierfur werden moderne vorkonditionierte Iterationsverfahren (z.B. CG, GMRES, BiCGStab) hergeleitet und die zur Realisierung notwendigen Algorithmen beschrieben. Fur Systeme mit strukturierten Matrizen werden effiziente direkte Loesungsverfahren angegeben. Numerische Beispiele fur praktische Problemstellungen illustrieren die Effizienz der vorgestellten Verfahren.
|
You may like...
|