0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video (Hardcover, 1st ed. 2018): Olga Isupova Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video (Hardcover, 1st ed. 2018)
Olga Isupova
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.

Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video (Paperback, Softcover reprint of the original... Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video (Paperback, Softcover reprint of the original 1st ed. 2018)
Olga Isupova
R3,119 Discovery Miles 31 190 Ships in 10 - 15 working days

This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Antony and Cleopatra: Language and…
Virginia Mason Vaughan Hardcover R2,029 R1,863 Discovery Miles 18 630
Hani - A Life Too Short
Janet Smith, Beauregard Tromp Paperback R310 R277 Discovery Miles 2 770
Macbeth - No Fear Shakespeare
Spark Notes Paperback R250 R228 Discovery Miles 2 280
Tell Me Your Story - South Africans…
Ruda Landman Paperback  (3)
R390 R366 Discovery Miles 3 660
Son Of A Preacher Man
Gavin Evans Paperback R280 R235 Discovery Miles 2 350
Shakespeare and Disgust - The History…
Bradley J Irish Hardcover R2,683 Discovery Miles 26 830
Not Just Friends - Rebuilding Trust And…
Shirley Glass, Jean Coppock Staeheli Paperback R518 R460 Discovery Miles 4 600
Othello
P Edmondson, Stuart Hampton-Reeves Hardcover R2,335 Discovery Miles 23 350
How To Make a Haunted House - Your Step…
Howexpert Hardcover R793 Discovery Miles 7 930
Handbook of Reptiles and Amphibians of…
Ray E. Ashton, Patricia Sawyer Ashton Hardcover R891 Discovery Miles 8 910

 

Partners