![]() |
![]() |
Your cart is empty |
||
Showing 1 - 10 of 10 matches in All Departments
Highly esteemed author Topics covered are relevant and timely
This book accounts in 5 independent parts, recent main developments of Stochastic Analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.
An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.
Jean Leray (1906-1998) was one of the great French mathematicians of his century. His life's work can be divided into 3 major areas, reflected in these three volumes. Volume I, to which an Introduction has been contributed by A. Borel, covers Leray's seminal work in algebraic topology, where he created sheaf theory and discovered the spectral sequences. Volume II, with an introduction by P. Lax, covers fluid mechanics and partial differential equations. Leray demonstrated the existence of the infinite-time extension of weak solutions of the Navier-Stokes equations; 60 years later this profound work has retained all its impact. Volume III, on the theory of several complex variables, has a long introduction by G. Henkin. Leray's work on the ramified Cauchy problem will stand for centuries alongside the Cauchy-Kovalevska theorem for the unramified case. He was awarded the Malaxa Prize (1938), the Grand Prix in Mathematical Sciences (1940), the Feltrinelli Prize (1971), the Wolf Prize in Mathematics (1979), and the Lomonosov Gold Medal (1988).
Jean Leray (1906-1998) was one of the great French mathematicians of his century. His life's work can be divided into 3 major areas, reflected in these 3 volumes. Volume I, to which an Introduction has been contributed by A. Borel, covers Leray's seminal work in algebraic topology, where he created sheaf theory and discovered the spectral sequences. Volume II, with an introduction by P. Lax, covers fluid mechanics and partial differential equations. Leray demonstrated the existence of the infinite-time extension of weak solutions of the Navier-Stokes equations; 60 years later this profound work has retained all its impact. Volume III, on the theory of several complex variables, has a long introduction by G. Henkin. Leray's work on the ramified Cauchy problem will stand for centuries alongside the Cauchy-Kovalevska theorem for the unramified case. He was awarded the Malaxa Prize (1938), the Grand Prix in Mathematical Sciences (1940), the Feltrinelli Prize (1971), the Wolf Prize in Mathematics (1979), and the Lomonosov Gold Medal (1988).
Jean Leray (1906-1998) was one of the great French mathematicians of his century. His life's workcan be dividedinto 3 major areas, reflected in these 3 volumes. Volume I, to which an Introduction has been contributed by A. Borel, covers Leray's seminal work in algebraic topology, where he created sheaf theory and discovered the spectral sequences. Volume II, with an introduction by P. Lax, covers fluid mechanics and partial differential equations. Leray demonstrated the existence of the infinite-time extension of weak solutions of the Navier-Stokes equations; 60 years later this profound work has retained all its impact. Volume III, on the theory of several complex variables, has a long introduction by G. Henkin. Leray's work on the ramified Cauchy problem will stand for centuries alongside the Cauchy-Kovalevska theorem for the unramified case. He was awarded the Malaxa Prize (1938), the Grand Prix in Mathematical Sciences (1940), the Feltrinelli Prize (1971), the Wolf Prize in Mathematics (1979), and the Lomonosov Gold Medal (1988)."
An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.
Highly esteemed author Topics covered are relevant and timely
|
![]() ![]() You may like...
|