0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R1,860 Discovery Miles 18 600 Ships in 10 - 15 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R3,398 Discovery Miles 33 980 Ships in 18 - 22 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang Hardcover R2,132 Discovery Miles 21 320
Evolutionary Global Optimization…
Hime Aguiar e Oliveira Junior Hardcover R3,214 Discovery Miles 32 140
Stochastic and Global Optimization
G. Dzemyda, V. Saltenis, … Hardcover R2,788 Discovery Miles 27 880
The Oxford Handbook of the Economics of…
Yann Bramoulle, Andrea Galeotti, … Hardcover R5,455 Discovery Miles 54 550
Althusser Revisited. Problematic…
Yibing Zhang Hardcover R1,015 Discovery Miles 10 150
Telling Stories
Steven Cohan, Linda M. Shires Hardcover R7,442 Discovery Miles 74 420
Derrida - Writing Events
Simon Wortham Hardcover R4,947 Discovery Miles 49 470
Consuming Cultures, Global Perspectives…
John Brewer, Frank Trentmann Hardcover R4,319 Discovery Miles 43 190
Biocomputing
Panos M. Pardalos, J. C. Principe Hardcover R2,799 Discovery Miles 27 990
Matroid Theory
James Oxley Hardcover R6,063 Discovery Miles 60 630

 

Partners