0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Hardcover, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R1,860 Discovery Miles 18 600 Ships in 10 - 15 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019): Peter D. Miller, Peter A.... Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Paperback, 1st ed. 2019)
Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulem
R3,398 Discovery Miles 33 980 Ships in 18 - 22 working days

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schroedinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Stellenbosch: Murder Town - Two Decades…
Julian Jansen Paperback R340 R304 Discovery Miles 3 040
Introduction To Legal Pluralism In South…
C. Rautenbach Paperback  (1)
R1,274 R1,150 Discovery Miles 11 500
Light Through The Bars - Understanding…
Babychan Arackathara Paperback R30 R28 Discovery Miles 280
Expensive Poverty - Why Aid Fails And…
Greg Mills Paperback R360 R326 Discovery Miles 3 260
Bafana Republic And Other Satires - A…
Mike Van Graan Paperback R230 R213 Discovery Miles 2 130
Freestyle Cooking With Chef Ollie
Oliver Swart Hardcover R450 R402 Discovery Miles 4 020
A History Of South Africa - From The…
Fransjohan Pretorius Paperback R435 Discovery Miles 4 350
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan Paperback R380 R339 Discovery Miles 3 390
The SABC 8
Foeta Krige Paperback R358 Discovery Miles 3 580
Waterboy - Making Sense Of My Son's…
Glynis Horning Paperback R320 R295 Discovery Miles 2 950

 

Partners