![]() |
![]() |
Your cart is empty |
||
Showing 1 - 13 of 13 matches in All Departments
At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism."
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.
One of the Top Selling Physics Books according to YBP Library Services Magnetic Anisotropies in Nanostructured Matter presents a compact summary of all the theoretical means to describe magnetic anisotropies and interlayer exchange coupling in nanosystems. The applications include free and capped magnetic surfaces, magnetic atoms on metallic substrates, nanowires, nanocontacts, and domain walls. Some applications also deal with temperature-dependent effects and ab initio magnetization dynamics. The author clarifies parallel and antiparallel, the distinction between classical spin vectors and spinors, and the actual form of spin orbit interactions, before showing how symmetry can provide the formal tools to properly define magnetic structures. After these introductory chapters, the book presents methods to describe anisotropic physical properties of magnetic nanostructures. It then focuses on magnetic anisotropy energies, exchange and Dzyaloshinskii Moriya interactions, temperature-dependent effects, spin dynamics, and related properties of systems nanostructured in one and two dimensions. The book also discusses how methods of describing electric and magneto-optical properties are applied to magnetic nanostructured matter. It concludes with an outlook on emerging magnetic anisotrophic effects. Written by a leading researcher with over 35 years of experience in the field, this book examines the theory and modeling of magnetic anisotropies in nanostructured materials. It shows how these materials are used in a range of applications.
At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism.
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.
This is not a science book, nor even a book about science, although most of the contributors are scientists. It is a book of personal stories about Walter Kohn, a theoretical physicist and winner of half of the 1998 Nobel Prize in Chemistry. Walter Kohn originated and/or refined a number of very important theoretical approaches and concepts in solid-state physics. He is known in particular for Density-Functional Theory. This book represents a kind of "oral history" about him, gathered - in anticipation of his 80th birthday - from former students, collaborators, fellow-scientists, and friends.
Auf der Basis aktueller Erkenntnisse aus der Musik-, Duft-, Wahrnehmungs-, Umwelt-, Gedachtnis- und Neuropsychologie leitet Ralph Salzmann die Uberlegenheit der ganzheitlichen, multimodalen Konsumentenansprache ab und weist diese empirisch in mehreren Felduntersuchungen nach."
Auf der Basis einer theoretischen und empirischen Analyse zeigt
Guido Purper, dass die herkommlichen Betriebsformeneinteilungen zur
Abdeckung der Konsumentenperspektive wenig geeignet sind, und
erarbeitet Klassifikationskriterien, die Konsumenten zur Einteilung
der Handelsanbieter tatsachlich heranziehen. Darauf aufbauend
entwickelt er seine Betriebsformen des Einzelhandels aus
Konsumentenperspektive.
Simone Besemer untersucht, wie Shopping-Center der Zukunft unter Berucksichtigung strategischer Bestimmungskriterien geplant und verhaltenswirksam gestaltet werden konnen, damit sie den Bedurfnissen der Nutzer entsprechen."
und Determinanten des Kaufverhaltens . 43 a) Beziehungen zwischen Produkttreue und Marktvariablen 44 1.
|
![]() ![]() You may like...
|