|
Showing 1 - 2 of
2 matches in All Departments
7 Hydrodynamic Instabilities in Close Binary Systems (Frederic A.
Rasio) 121 7. 1 Introduction. . . . . . . . . . . . . . . . . . . .
. . . . 121 7. 1. 1 The stability of self-gravitating fluid
equilibria 121 7. 1. 2 Astrophysical motivation . 123 7. 1. 3
Common envelope systems 125 7. 2 Dynamical instabilities. . . . . .
. 126 7. 2. 1 Physical mechanism . . . . 126 7. 2. 2 Application to
coalescing neutron star binaries 127 7. 3 Secular instabilities. .
. . . . . . . . . 130 7. 3. 1 Physical mechanism . . . . . . 130 7.
3. 2 Application to contact binaries 133 8 Common Envelope
Evolution in Binary Systems (Mario Livio) 141 8. 1 Introduction. .
. . . . . . . . . . . . . . . . . . 141 8. 2 The entrance into the
common envelope phase . . . . . 142 8. 3 The outcome of the CE
phase. . . . . . . . . . . . . . . 145 8. 4 How close can we get to
observing the common envelope Phase? . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 146 8. 4. 1 How can PNe with
binary nuclei be used to constrain CE physics . . . . . . . . . . .
. . . . . . . . . . . . . . . . 147 8. 4. 2 How can nova systems be
used to constrain CE physics 148 8. 4. 3 Other tests of common
envelope evolution 150 8. 5 Conclusions . . . . . . . . . . . . . .
. . . . . . . . . 151 9 Structure and Evolution of Massive Close
Binaries (Dany Vanbeveren) 155 9. 1 Introduction. . . . . . . . . .
. . . . . . . . 155 9. 2 Definitions. . . . . . . . . . . . . . . .
. . . 156 9. 3 Intermediate mass and massive single stars 156 9. 3.
1 Observations . . . . . . . . . . . . . 156 9. 3. 2 Stellar
structure equations for non-rotating IMS's and MS's 160 9. 3. 3
Evolutionary computations of non-rotating IMS's and MS's 162 9. 3.
4 Overall comparison with observations '" 163 9. 3. 5 The role of
rotation in single star evolution . . .
7 Hydrodynamic Instabilities in Close Binary Systems (Frederic A.
Rasio) 121 7. 1 Introduction. . . . . . . . . . . . . . . . . . . .
. . . . 121 7. 1. 1 The stability of self-gravitating fluid
equilibria 121 7. 1. 2 Astrophysical motivation . 123 7. 1. 3
Common envelope systems 125 7. 2 Dynamical instabilities. . . . . .
. 126 7. 2. 1 Physical mechanism . . . . 126 7. 2. 2 Application to
coalescing neutron star binaries 127 7. 3 Secular instabilities. .
. . . . . . . . . 130 7. 3. 1 Physical mechanism . . . . . . 130 7.
3. 2 Application to contact binaries 133 8 Common Envelope
Evolution in Binary Systems (Mario Livio) 141 8. 1 Introduction. .
. . . . . . . . . . . . . . . . . . 141 8. 2 The entrance into the
common envelope phase . . . . . 142 8. 3 The outcome of the CE
phase. . . . . . . . . . . . . . . 145 8. 4 How close can we get to
observing the common envelope Phase? . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 146 8. 4. 1 How can PNe with
binary nuclei be used to constrain CE physics . . . . . . . . . . .
. . . . . . . . . . . . . . . . 147 8. 4. 2 How can nova systems be
used to constrain CE physics 148 8. 4. 3 Other tests of common
envelope evolution 150 8. 5 Conclusions . . . . . . . . . . . . . .
. . . . . . . . . 151 9 Structure and Evolution of Massive Close
Binaries (Dany Vanbeveren) 155 9. 1 Introduction. . . . . . . . . .
. . . . . . . . 155 9. 2 Definitions. . . . . . . . . . . . . . . .
. . . 156 9. 3 Intermediate mass and massive single stars 156 9. 3.
1 Observations . . . . . . . . . . . . . 156 9. 3. 2 Stellar
structure equations for non-rotating IMS's and MS's 160 9. 3. 3
Evolutionary computations of non-rotating IMS's and MS's 162 9. 3.
4 Overall comparison with observations '" 163 9. 3. 5 The role of
rotation in single star evolution . . .
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.