Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
This is the first of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization.Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book explains the mathematical structure of digital twins, their development and the model's respective parts, as well as concepts for the knowledge-driven generation and structural variability of digital twins. Covering fundamentals as well as applications, the two volumes offer the ideal introduction to the topic for researchers in academy and industry alike.
This is the second of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book focuses on the application of digital twins in various contexts, e.g. computer-aided experimental design, seed train prediction, and lifeline analysis. Covering fundamentals as well as applications, the two volumes offers the ideal introduction to the topic for researchers in academy and industry alike.
Alternative Sources of Adult Stem Cells: Human Amniotic
Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer,
and A. Peterbauer-Scherb;
The second edition of this book constitutes a comprehensive manual of new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture considering the whole cascade from lab to final production. The chapters are written by world-renowned experts and the volume's five parts reflect the processes required for different stages of production. This book is a compendium of techniques for scientists in both industrial and research laboratories that use mammalian cells for biotechnology purposes.
"Animal Cell Biotechnology: Methods and Protocols, Third Edition" constitutes a comprehensive manual of state-of-the-art and new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture from lab to final production. The volume is divided into five parts that reflect the processes required for different stages of production. In Part I, basic techniques for establishment of production cell lines are addressed, especially high-throughput synchronization, insect cell lines, transient gene and protein expression, DNA Profiling and Characterisation. Part II addresses tools for process and medium optimization as well as microcarrier technology while Part III covers monitoring of cell growth, viability and apoptosis, metabolic flux estimation, quenching methods as well as NMR-based techniques. Part IV details cultivation techniques, and Part V describes special applications, including vaccine production, baculovirus protein expression, chromatographic techniques for downstream as well as membrane techniques for virus separation. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. "Animal Cell Biotechnology: Methods and Protocols, Third Edition" provides a compendium of techniques for scientists in industrial and research laboratories that use mammalian cells for biotechnology purposes.
The completion of the Human Genome Project and the rapid progress in cell bi- ogy and biochemical engineering, are major forces driving the steady increase of approved biotech products, especially biopharmaceuticals, in the market. Today mammalian cell products ("products from cells"), primarily monoclonals, cytokines, recombinant glycoproteins, and, increasingly, vaccines, dominate the biopharmaceutical industry. Moreover, a small number of products consisting of in vitro cultivated cells ("cells as product") for regenerative medicine have also been introduced in the market. Their efficient production requires comprehensive knowledge of biological as well as biochemical mammalian cell culture fundamentals (e.g., cell characteristics and metabolism, cell line establishment, culture medium optimization) and related engineering principles (e.g., bioreactor design, process scale-up and optimization). In addition, new developments focusing on cell line development, animal-free c- ture media, disposables and the implications of changing processes (multi-purpo- facilities) have to be taken into account. While a number of excellent books treating the basic methods and applications of mammalian cell culture technology have been published, only little attention has been afforded to their engineering aspects. The aim of this book is to make a contribution to closing this gap; it particularly focuses on the interactions between biological and biochemical and engineering principles in processes derived from cell cultures. It is not intended to give a c- prehensive overview of the literature. This has been done extensively elsewhere.
The Cell-Surface Interaction, by J. S. Hayes, E. M. Czekanska and R. G. Richards. Studying Cell-Surface Interactions In Vitro: A Survey of Experimental Approaches and Techniques, by Stefanie Michaelis, Rudolf Robelek and Joachim Wegener. Harnessing Cell-Biomaterial Interactions for Osteochondral Tissue Regeneration, by Kyobum Kim, Diana M. Yoon, Antonios G. Mikos and F. Kurtis Kasper. Interaction of Cells with Decellularized Biological Materials, by Mathias Wilhelmi, Bettina Giere and Michael Harder. Evaluation of Biocompatibility Using In Vitro Methods: Interpretation and Limitations, by Arie Bruinink and Reto Luginbuehl. Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues, by Margit Schulze and Edda Tobiasch. Bioactive Glass-Based Scaffolds for Bone Tissue Engineering, by Julia Will, Lutz-Christian Gerhardt and Aldo R. Boccaccini. Microenvironment Design for Stem Cell Fate Determination, by Tali Re'em and Smadar Cohen. Stem Cell Differentiation Depending on Different Surfaces, by Sonja Kress, Anne Neumann, Birgit Weyand and Cornelia Kasper. Designing the Biocompatibility of Biohybrids, by Frank Witte, Ivonne Bartsch and Elmar Willbold. Interaction of Cartilage and Ceramic Matrix, by K. Wiegandt, C. Goepfert, R. Portner and R. Janssen. Bioresorption and Degradation of Biomaterials, by Debarun Das, Ziyang Zhang, Thomas Winkler, Meenakshi Mour, Christina I. Gunter, Michael M. Morlock, Hans-Gunther Machens and Arndt F. Schilling."
This is the first of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization.Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book explains the mathematical structure of digital twins, their development and the model's respective parts, as well as concepts for the knowledge-driven generation and structural variability of digital twins. Covering fundamentals as well as applications, the two volumes offer the ideal introduction to the topic for researchers in academy and industry alike.
This is the second of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book focuses on the application of digital twins in various contexts, e.g. computer-aided experimental design, seed train prediction, and lifeline analysis. Covering fundamentals as well as applications, the two volumes offers the ideal introduction to the topic for researchers in academy and industry alike.
The editors of this special volume would first like to thank all authors for their excellent contributions. We would also like to thank Prof. Dr. Thomas Scheper, Dr. Marion Hertel and Ulrike Kreusel for providing the opportunity to compose this volume and Springer for organizational and technical support. Tissue engineering represents one of the major emerging fields in modern b- technology; it combines different subjects ranging from biological and material sciences to engineering and clinical disciplines. The aim of tissue engineering is the development of therapeutic approaches to substitute diseased organs or tissues or improve their function. Therefore, three dimensional biocompatible materials are seeded with cells and cultivated in suitable systems to generate functional tissues. Many different aspects play a role in the formation of 3D tissue structures. In the first place the source of the used cells is of the utmost importance. To prevent tissue rejection or immune response, preferentially autologous cells are now used. In particular, stem cells from different sources are gaining exceptional importance as they can be differentiated into different tissues by using special media and supplements. In the field of biomaterials, numerous scaffold materials already exist but new composites are also being developed based on polymeric, natural or xenogenic sources. Moreover, a very important issue in tissue en- neering is the formation of tissues under well defined, controlled and reprod- ible conditions. Therefore, a substantial number of new bioreactors have been developed.
Animal Cell Biotechnology: Methods and Protocols, Third Edition constitutes a comprehensive manual of state-of-the-art and new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture from lab to final production. The volume is divided into five parts that reflect the processes required for different stages of production. In Part I, basic techniques for establishment of production cell lines are addressed, especially high-throughput synchronization, insect cell lines, transient gene and protein expression, DNA Profiling and Characterisation. Part II addresses tools for process and medium optimization as well as microcarrier technology while Part III covers monitoring of cell growth, viability and apoptosis, metabolic flux estimation, quenching methods as well as NMR-based techniques. Part IV details cultivation techniques, and Part V describes special applications, including vaccine production, baculovirus protein expression, chromatographic techniques for downstream as well as membrane techniques for virus separation. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Animal Cell Biotechnology: Methods and Protocols, Third Edition provides a compendium of techniques for scientists in industrial and research laboratories that use mammalian cells for biotechnology purposes.
The second edition of this book constitutes a comprehensive manual of new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture considering the whole cascade from lab to final production. The chapters are written by world-renowned experts and the volume's five parts reflect the processes required for different stages of production. This book is a compendium of techniques for scientists in both industrial and research laboratories that use mammalian cells for biotechnology purposes.
The Cell-Surface Interaction, by J. S. Hayes, E. M. Czekanska and R. G. Richards. Studying Cell-Surface Interactions In Vitro: A Survey of Experimental Approaches and Techniques, by Stefanie Michaelis, Rudolf Robelek and Joachim Wegener. Harnessing Cell-Biomaterial Interactions for Osteochondral Tissue Regeneration, by Kyobum Kim, Diana M. Yoon, Antonios G. Mikos and F. Kurtis Kasper. Interaction of Cells with Decellularized Biological Materials, by Mathias Wilhelmi, Bettina Giere and Michael Harder. Evaluation of Biocompatibility Using In Vitro Methods: Interpretation and Limitations, by Arie Bruinink and Reto Luginbuehl. Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues, by Margit Schulze and Edda Tobiasch. Bioactive Glass-Based Scaffolds for Bone Tissue Engineering, by Julia Will, Lutz-Christian Gerhardt and Aldo R. Boccaccini. Microenvironment Design for Stem Cell Fate Determination, by Tali Re em and Smadar Cohen. Stem Cell Differentiation Depending on Different Surfaces, by Sonja Kress, Anne Neumann, Birgit Weyand and Cornelia Kasper. Designing the Biocompatibility of Biohybrids, by Frank Witte, Ivonne Bartsch and Elmar Willbold. Interaction of Cartilage and Ceramic Matrix, by K. Wiegandt, C. Goepfert, R. Portner and R. Janssen. Bioresorption and Degradation of Biomaterials, by Debarun Das, Ziyang Zhang, Thomas Winkler, Meenakshi Mour, Christina I. Gunter, Michael M. Morlock, Hans-Gunther Machens and Arndt F. Schilling."
Alternative Sources of Adult Stem Cells: Human Amniotic
Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer,
and A. Peterbauer-Scherb;
The editors of this special volume would first like to thank all authors for their excellent contributions. We would also like to thank Prof. Dr. Thomas Scheper, Dr. Marion Hertel and Ulrike Kreusel for providing the opportunity to compose this volume and Springer for organizational and technical support. Tissue engineering represents one of the major emerging fields in modern b- technology; it combines different subjects ranging from biological and material sciences to engineering and clinical disciplines. The aim of tissue engineering is the development of therapeutic approaches to substitute diseased organs or tissues or improve their function. Therefore, three dimensional biocompatible materials are seeded with cells and cultivated in suitable systems to generate functional tissues. Many different aspects play a role in the formation of 3D tissue structures. In the first place the source of the used cells is of the utmost importance. To prevent tissue rejection or immune response, preferentially autologous cells are now used. In particular, stem cells from different sources are gaining exceptional importance as they can be differentiated into different tissues by using special media and supplements. In the field of biomaterials, numerous scaffold materials already exist but new composites are also being developed based on polymeric, natural or xenogenic sources. Moreover, a very important issue in tissue en- neering is the formation of tissues under well defined, controlled and reprod- ible conditions. Therefore, a substantial number of new bioreactors have been developed.
The completion of the Human Genome Project and the rapid progress in cell bi- ogy and biochemical engineering, are major forces driving the steady increase of approved biotech products, especially biopharmaceuticals, in the market. Today mammalian cell products ("products from cells"), primarily monoclonals, cytokines, recombinant glycoproteins, and, increasingly, vaccines, dominate the biopharmaceutical industry. Moreover, a small number of products consisting of in vitro cultivated cells ("cells as product") for regenerative medicine have also been introduced in the market. Their efficient production requires comprehensive knowledge of biological as well as biochemical mammalian cell culture fundamentals (e.g., cell characteristics and metabolism, cell line establishment, culture medium optimization) and related engineering principles (e.g., bioreactor design, process scale-up and optimization). In addition, new developments focusing on cell line development, animal-free c- ture media, disposables and the implications of changing processes (multi-purpo- facilities) have to be taken into account. While a number of excellent books treating the basic methods and applications of mammalian cell culture technology have been published, only little attention has been afforded to their engineering aspects. The aim of this book is to make a contribution to closing this gap; it particularly focuses on the interactions between biological and biochemical and engineering principles in processes derived from cell cultures. It is not intended to give a c- prehensive overview of the literature. This has been done extensively elsewhere.
|
You may like...
The Quantification of Life and Health…
Simone Guidi, Joaquim Braga
Hardcover
R3,953
Discovery Miles 39 530
Metallurgic Chymistry. Being a System of…
Christlieb Ehregott Gellert
Paperback
R591
Discovery Miles 5 910
|