Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This is an overview of the current state of knowledge along with open problems and perspectives, clarified in such fields as non-standard inferences in description logics, logic of provability, logical dynamics and computability theory. The book includes contributions concerning the role of logic today, including unexpected aspects of contemporary logic and the application of logic. This book will be of interest to logicians and mathematicians in general.
The theory of constructive (recursive) models follows from works of Froehlich, Shepherdson, Mal'tsev, Kuznetsov, Rabin, and Vaught in the 50s. Within the framework of this theory, algorithmic properties of abstract models are investigated by constructing representations on the set of natural numbers and studying relations between algorithmic and structural properties of these models. This book is a very readable exposition of the modern theory of constructive models and describes methods and approaches developed by representatives of the Siberian school of algebra and logic and some other researchers (in particular, Nerode and his colleagues). The main themes are the existence of recursive models and applications to fields, algebras, and ordered sets (Ershov), the existence of decidable prime models (Goncharov, Harrington), the existence of decidable saturated models (Morley), the existence of decidable homogeneous models (Goncharov and Peretyat'kin), properties of the Ehrenfeucht theories (Millar, Ash, and Reed), the theory of algorithmic dimension and conditions of autostability (Goncharov, Ash, Shore, Khusainov, Ventsov, and others), and the theory of computable classes of models with various properties. Future perspectives of the theory of constructive models are also discussed. Most of the results in the book are presented in monograph form for the first time. The theory of constructive models serves as a basis for recursive mathematics. It is also useful in computer science, in particular, in the study of programming languages, higher level languages of specification, abstract data types, and problems of synthesis and verification of programs. Therefore, the book will be usefulfor not only specialists in mathematical logic and the theory of algorithms but also for scientists interested in the mathematical fundamentals of computer science. The authors are eminent specialists in mathematical logic. They have established fundamental results on elementary theories, model theory, the theory of algorithms, field theory, group theory, applied logic, computable numberings, the theory of constructive models, and the theoretical computer science.
This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.
Science involves descriptions of the world we live in. It also depends on nature exhibiting what we can best describe as a high aLgorithmic content. The theme running through this collection of papers is that of the interaction between descriptions, in the form of formal theories, and the algorithmic content of what is described, namely of the modeLs of those theories. This appears most explicitly here in a number of valuable, and substantial, contributions to what has until recently been known as 'recursive model theory' - an area in which researchers from the former Soviet Union (in particular Novosibirsk) have been pre-eminent. There are also articles concerned with the computability of aspects of familiar mathematical structures, and - a return to the sort of basic underlying questions considered by Alan Turing in the early days of the subject - an article giving a new perspective on computability in the real world. And, of course, there are also articles concerned with the classical theory of computability, including the first widely available survey of work on quasi-reducibility. The contributors, all internationally recognised experts in their fields, have been associated with the three-year INTAS-RFBR Research Project "Com putability and Models" (Project No. 972-139), and most have participated in one or more of the various international workshops (in Novosibirsk, Heidelberg and Almaty) and otherresearch activities of the network."
Science involves descriptions of the world we live in. It also depends on nature exhibiting what we can best describe as a high aLgorithmic content. The theme running through this collection of papers is that of the interaction between descriptions, in the form of formal theories, and the algorithmic content of what is described, namely of the modeLs of those theories. This appears most explicitly here in a number of valuable, and substantial, contributions to what has until recently been known as 'recursive model theory' - an area in which researchers from the former Soviet Union (in particular Novosibirsk) have been pre-eminent. There are also articles concerned with the computability of aspects of familiar mathematical structures, and - a return to the sort of basic underlying questions considered by Alan Turing in the early days of the subject - an article giving a new perspective on computability in the real world. And, of course, there are also articles concerned with the classical theory of computability, including the first widely available survey of work on quasi-reducibility. The contributors, all internationally recognised experts in their fields, have been associated with the three-year INTAS-RFBR Research Project "Com putability and Models" (Project No. 972-139), and most have participated in one or more of the various international workshops (in Novosibirsk, Heidelberg and Almaty) and otherresearch activities of the network.
The theory of constructive (recursive) models follows from works of Froehlich, Shepherdson, Mal'tsev, Kuznetsov, Rabin, and Vaught in the 50s. Within the framework of this theory, algorithmic properties of abstract models are investigated by constructing representations on the set of natural numbers and studying relations between algorithmic and structural properties of these models. This book is a very readable exposition of the modern theory of constructive models and describes methods and approaches developed by representatives of the Siberian school of algebra and logic and some other researchers (in particular, Nerode and his colleagues). The main themes are the existence of recursive models and applications to fields, algebras, and ordered sets (Ershov), the existence of decidable prime models (Goncharov, Harrington), the existence of decidable saturated models (Morley), the existence of decidable homogeneous models (Goncharov and Peretyat'kin), properties of the Ehrenfeucht theories (Millar, Ash, and Reed), the theory of algorithmic dimension and conditions of autostability (Goncharov, Ash, Shore, Khusainov, Ventsov, and others), and the theory of computable classes of models with various properties. Future perspectives of the theory of constructive models are also discussed. Most of the results in the book are presented in monograph form for the first time. The theory of constructive models serves as a basis for recursive mathematics. It is also useful in computer science, in particular, in the study of programming languages, higher level languages of specification, abstract data types, and problems of synthesis and verification of programs. Therefore, the book will be useful for not only specialists in mathematical logic and the theory of algorithms but also for scientists interested in the mathematical fundamentals of computer science. The authors are eminent specialists in mathematical logic. They have established fundamental results on elementary theories, model theory, the theory of algorithms, field theory, group theory, applied logic, computable numberings, the theory of constructive models, and the theoretical computer science.
This is an overview of the current state of knowledge along with open problems and perspectives, clarified in such fields as non-standard inferences in description logics, logic of provability, logical dynamics and computability theory. The book includes contributions concerning the role of logic today, including unexpected aspects of contemporary logic and the application of logic. This book will be of interest to logicians and mathematicians in general.
|
You may like...
|