0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (1)
  • R10,000+ (1)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Codes on Algebraic Curves (Hardcover, 1999 ed.): Serguei A. Stepanov Codes on Algebraic Curves (Hardcover, 1999 ed.)
Serguei A. Stepanov
R4,570 Discovery Miles 45 700 Ships in 10 - 15 working days

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Arithmetic of Algebraic Curves (Hardcover, 1995 ed.): Serguei A. Stepanov Arithmetic of Algebraic Curves (Hardcover, 1995 ed.)
Serguei A. Stepanov
R10,509 Discovery Miles 105 090 Ships in 12 - 19 working days

Author S.A. Stepanov thoroughly investigates the current state of the theory of Diophantine equations and its related methods. Discussions focus on arithmetic, algebraic-geometric, and logical aspects of the problem. Designed for students as well as researchers, the book includes over 250 excercises accompanied by hints, instructions, and references. Written in a clear manner, this text does not require readers to have special knowledge of modern methods of algebraic geometry.

Number Theory and Its Applications (Hardcover): Cem Y. Yildrim, Serguei A. Stepanov Number Theory and Its Applications (Hardcover)
Cem Y. Yildrim, Serguei A. Stepanov
R5,399 Discovery Miles 53 990 Ships in 12 - 19 working days

This valuable reference addresses the methods leading to contemporary developments in number theory and coding theory, originally presented as lectures at a summer school held at Bilkent University, Ankara, Turkey. With nearly 1500 references, equations, drawings, and tables, Number Theory and Its Applications especially benefits number theorists, coding theorists, algebraists, algebraic geometers, applied mathematicians, information theorists, and upper-level undergraduate and graduate students in these fields.

Codes on Algebraic Curves (Paperback, Softcover reprint of the original 1st ed. 1999): Serguei A. Stepanov Codes on Algebraic Curves (Paperback, Softcover reprint of the original 1st ed. 1999)
Serguei A. Stepanov
R4,365 Discovery Miles 43 650 Ships in 10 - 15 working days

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Collection Management for the 21st…
Gary E. Gorman, Ruth H. Miller Hardcover R3,623 Discovery Miles 36 230
Trade eBooks in Libraries - The Changing…
Paul Whitney, Christina Castell Hardcover R2,928 Discovery Miles 29 280
Loodglaskuns - Eietydse loodglaskuns…
Gail Brown, Jacqui Holmes Paperback R95 R88 Discovery Miles 880
I Shock Myself: Beatrice Wood, Career…
Beatrice Wood Paperback R609 R522 Discovery Miles 5 220
Saggar Firing in an Electric Kiln: A…
Jolanda Van De Grint Hardcover R800 R711 Discovery Miles 7 110
The Glass Painter's Method - Brushes…
David Williams, Stephen Byrne Hardcover R923 Discovery Miles 9 230
The Fetal Right to Life Argument…
C Paul Smith Paperback R333 R314 Discovery Miles 3 140
Abortion - A Documentary and Reference…
Melody Rose Hardcover R3,082 Discovery Miles 30 820
A Private Matter - RU486 and the…
Lawrence Lader Hardcover R959 Discovery Miles 9 590
Men and Abortion - Lessons, Losses, and…
Gary McLouth, Arthur B Shostak Hardcover R2,818 Discovery Miles 28 180

 

Partners