0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Codes on Algebraic Curves (Hardcover, 1999 ed.): Serguei A. Stepanov Codes on Algebraic Curves (Hardcover, 1999 ed.)
Serguei A. Stepanov
R4,215 Discovery Miles 42 150 Ships in 18 - 22 working days

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Arithmetic of Algebraic Curves (Hardcover, 1995 ed.): Serguei A. Stepanov Arithmetic of Algebraic Curves (Hardcover, 1995 ed.)
Serguei A. Stepanov
R9,884 Discovery Miles 98 840 Ships in 10 - 15 working days

Author S.A. Stepanov thoroughly investigates the current state of the theory of Diophantine equations and its related methods. Discussions focus on arithmetic, algebraic-geometric, and logical aspects of the problem. Designed for students as well as researchers, the book includes over 250 excercises accompanied by hints, instructions, and references. Written in a clear manner, this text does not require readers to have special knowledge of modern methods of algebraic geometry.

Number Theory and Its Applications (Hardcover): Cem Y. Yildrim, Serguei A. Stepanov Number Theory and Its Applications (Hardcover)
Cem Y. Yildrim, Serguei A. Stepanov
R5,080 Discovery Miles 50 800 Ships in 10 - 15 working days

This valuable reference addresses the methods leading to contemporary developments in number theory and coding theory, originally presented as lectures at a summer school held at Bilkent University, Ankara, Turkey. With nearly 1500 references, equations, drawings, and tables, Number Theory and Its Applications especially benefits number theorists, coding theorists, algebraists, algebraic geometers, applied mathematicians, information theorists, and upper-level undergraduate and graduate students in these fields.

Codes on Algebraic Curves (Paperback, Softcover reprint of the original 1st ed. 1999): Serguei A. Stepanov Codes on Algebraic Curves (Paperback, Softcover reprint of the original 1st ed. 1999)
Serguei A. Stepanov
R4,027 Discovery Miles 40 270 Ships in 18 - 22 working days

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Digital Dilemmas - Power, Resistance…
M.I. Franklin Hardcover R3,754 Discovery Miles 37 540
Beeld 50 - Om 'n Groot Storie Hard Te…
Erika de Beer Paperback R395 R353 Discovery Miles 3 530
Type-C Fast Charge Wall Adapter…
R399 Discovery Miles 3 990
Guilty
Martina Cole, Jacqui Rose Paperback R551 Discovery Miles 5 510
Goal Zero Venture 35 Power Bank…
R1,999 R1,399 Discovery Miles 13 990
Elton Baatjies
Lester Walbrugh Paperback R320 R295 Discovery Miles 2 950
Messi vs. Ronaldo - One Rivalry, Two…
Jonathan Clegg, Joshua Robinson Paperback R370 R330 Discovery Miles 3 300
Snug 2 Port USB Home Charger with…
R499 R399 Discovery Miles 3 990
Derby County: Champions at Last - A…
David Moore Paperback R470 Discovery Miles 4 700
2-Port USB & Type-C Fast-Charge Car…
R299 Discovery Miles 2 990

 

Partners