0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Introduction to Stochastic Processes Using R (1st ed. 2023): Sivaprasad Madhira, Shailaja Deshmukh Introduction to Stochastic Processes Using R (1st ed. 2023)
Sivaprasad Madhira, Shailaja Deshmukh
R3,345 Discovery Miles 33 450 Ships in 10 - 15 working days

This textbook presents some basic stochastic processes, mainly Markov processes. It begins with a brief introduction to the framework of stochastic processes followed by the thorough discussion on Markov chains, which is the simplest and the most important class of stochastic processes. The book then elaborates the theory of Markov chains in detail including classification of states, the first passage distribution, the concept of periodicity and the limiting behaviour of a Markov chain in terms of associated stationary and long run distributions. The book first illustrates the theory for some typical Markov chains, such as random walk, gambler's ruin problem, Ehrenfest model and Bienayme-Galton-Watson branching process; and then extends the discussion when time parameter is continuous. It presents some important examples of a continuous time Markov chain, which include Poisson process, birth process, death process, birth and death processes and their variations. These processes play a fundamental role in the theory and applications in queuing and inventory models, population growth, epidemiology and engineering systems. The book studies in detail the Poisson process, which is the most frequently applied stochastic process in a variety of fields, with its extension to a renewal process. The book also presents important basic concepts on Brownian motion process, a stochastic process of historic importance. It covers its few extensions and variations, such as Brownian bridge, geometric Brownian motion process, which have applications in finance, stock markets, inventory etc. The book is designed primarily to serve as a textbook for a one semester introductory course in stochastic processes, in a post-graduate program, such as Statistics, Mathematics, Data Science and Finance. It can also be used for relevant courses in other disciplines. Additionally, it provides sufficient background material for studying inference in stochastic processes. The book thus fulfils the need of a concise but clear and student-friendly introduction to various types of stochastic processes.

Asymptotic Statistical Inference - A Basic Course Using R (Hardcover, 1st ed. 2021): Shailaja Deshmukh, Madhuri Kulkarni Asymptotic Statistical Inference - A Basic Course Using R (Hardcover, 1st ed. 2021)
Shailaja Deshmukh, Madhuri Kulkarni
R3,016 Discovery Miles 30 160 Ships in 12 - 17 working days

The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald's test, their relationship with the likelihood ratio test and Karl Pearson's chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson's chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.

Asymptotic Statistical Inference - A Basic Course Using R (Paperback, 1st ed. 2021): Shailaja Deshmukh, Madhuri Kulkarni Asymptotic Statistical Inference - A Basic Course Using R (Paperback, 1st ed. 2021)
Shailaja Deshmukh, Madhuri Kulkarni
R2,381 Discovery Miles 23 810 Ships in 10 - 15 working days

The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald's test, their relationship with the likelihood ratio test and Karl Pearson's chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson's chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Home Classix Trusty Traveller Mug…
R99 R81 Discovery Miles 810
Understanding the Purpose and Power of…
Myles Munroe Paperback R280 R210 Discovery Miles 2 100
Raz Tech Laptop Security Chain Cable…
R299 R169 Discovery Miles 1 690
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Volkano Industrial 14'' Laptop Case…
R238 Discovery Miles 2 380
Sylvanian Families - Walnut Squirrel…
R749 R579 Discovery Miles 5 790
OMC! Totally Wick-ed! Candle Kit
Hinkler Pty Ltd Kit R250 R119 Discovery Miles 1 190
LocknLock Pet Dry Food Container (1.6L)
R109 R91 Discovery Miles 910

 

Partners