![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics. It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma. These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons. In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties. At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein's theory, point to possible alternative scenarios, where this collapse might be avoided. These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view. While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.
With contributions by leading theoreticians, this book presents the discoveries of hitherto hidden connections between seemingly unrelated fields of fundamental physics. The topics range from cosmology and astrophysics to nuclear-, particle- and heavy-ion science. A current example concerns the sensitivity of gravitational wave spectra to the phase structure of dense nuclear and quark matter in binary neutron star collisions. The contributions by Hanauske and Stoecker as well as Banik and Bandyopadhyay relate the consequent insights to hot dense nuclear matter created in supernova explosions and in high-energy heavy-ion collisions. Studies of the equation of state for neutron stars are also presented, as are those for nuclear matter in high-energy heavy-ion collisions. Other reviews focus on QCD-thermodynamics, charmed mesons in the quark-gluon plasma, nuclear theory, extensions to the standard general theory of relativity, new experimental developments in heavy ion collisions and renewable energy networks. The book will appeal to advanced students and researchers seeking a broad view of current challenges in theoretical physics and their interconnections.
With contributions by leading theoreticians, this book presents the discoveries of hitherto hidden connections between seemingly unrelated fields of fundamental physics. The topics range from cosmology and astrophysics to nuclear-, particle- and heavy-ion science. A current example concerns the sensitivity of gravitational wave spectra to the phase structure of dense nuclear and quark matter in binary neutron star collisions. The contributions by Hanauske and Stoecker as well as Banik and Bandyopadhyay relate the consequent insights to hot dense nuclear matter created in supernova explosions and in high-energy heavy-ion collisions. Studies of the equation of state for neutron stars are also presented, as are those for nuclear matter in high-energy heavy-ion collisions. Other reviews focus on QCD-thermodynamics, charmed mesons in the quark-gluon plasma, nuclear theory, extensions to the standard general theory of relativity, new experimental developments in heavy ion collisions and renewable energy networks. The book will appeal to advanced students and researchers seeking a broad view of current challenges in theoretical physics and their interconnections.
This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics. It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma. These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons. In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties. At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein's theory, point to possible alternative scenarios, where this collapse might be avoided. These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view. While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.
|
![]() ![]() You may like...
Digital Fashion Innovations - Advances…
Abu Sadat Muhammad Sayem
Hardcover
R5,812
Discovery Miles 58 120
Proactive Law for Managers - A Hidden…
George Siedel, Helena Haapio
Hardcover
R4,478
Discovery Miles 44 780
Machine Learning and Artificial…
Tawseef Ayoub Shaikh, Saqib Hakak, …
Hardcover
R4,833
Discovery Miles 48 330
Special Functions in Fractional Calculus…
Harendra Singh, H.M. Srivastava, …
Hardcover
R4,464
Discovery Miles 44 640
Industrial Engineering in Systems Design…
Brian Peacock, Adedeji B. Badiru
Hardcover
R3,719
Discovery Miles 37 190
3D Printing of Sensors, Actuators, and…
Rupinder Singh, Balwinder Singh Dhaliwal, …
Hardcover
R2,472
Discovery Miles 24 720
Kinanthropometry IX - Proceedings of the…
Michael Marfell-Jones, Arthur Stewart, …
Paperback
|