0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Simulation-Based Algorithms for Markov Decision Processes (Hardcover, 2nd ed. 2013): Hyeong Soo Chang, Jiaqiao Hu, Michael C.... Simulation-Based Algorithms for Markov Decision Processes (Hardcover, 2nd ed. 2013)
Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus
R2,670 Discovery Miles 26 700 Ships in 18 - 22 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search.
This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes:
innovative material on MDPs, both in constrained settings and with uncertain transition properties;
game-theoretic method for solving MDPs;
theories for developing roll-out based algorithms; and
details of approximation stochastic annealing, a population-based on-line simulation-based algorithm.
The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.

Simulation-based Algorithms for Markov Decision Processes (Paperback, Softcover reprint of hardcover 1st ed. 2007): Hyeong Soo... Simulation-based Algorithms for Markov Decision Processes (Paperback, Softcover reprint of hardcover 1st ed. 2007)
Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, Steven I. Marcus
R3,513 Discovery Miles 35 130 Ships in 18 - 22 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. This book brings the state-of-the-art research together for the first time. It provides practical modeling methods for many real-world problems with high dimensionality or complexity which have not hitherto been treatable with Markov decision processes.

Simulation-Based Algorithms for Markov Decision Processes (Paperback, 2nd ed. 2013): Hyeong Soo Chang, Jiaqiao Hu, Michael C.... Simulation-Based Algorithms for Markov Decision Processes (Paperback, 2nd ed. 2013)
Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus
R2,665 Discovery Miles 26 650 Ships in 18 - 22 working days

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
At the Dawn of Humanity - The First…
Gerard M. Verschuuren Hardcover R770 Discovery Miles 7 700
Iron Man - My Journey through Heaven and…
Tony Iommi Paperback R535 R505 Discovery Miles 5 050
Semi-Lagrangian Advection Methods and…
Steven James Fletcher Paperback R3,338 Discovery Miles 33 380
The One Memory Of Flora Banks
Emily Barr Paperback  (1)
R260 R237 Discovery Miles 2 370
Predictive Species and Habitat Modeling…
C. Ashton Drew, Yolanda F. Wiersma, … Hardcover R5,860 Discovery Miles 58 600
Computational Mechanics of…
Rajeev Kumar Jaiman, Vaibhav Joshi Hardcover R2,695 Discovery Miles 26 950
Urban Ecology - Emerging Patterns and…
Pramit Verma, Pardeep Singh, … Paperback R2,570 Discovery Miles 25 700
Foundations of Stress Waves
Lili Wang Hardcover R3,728 Discovery Miles 37 280
Eight Keys To Progressive Spiritual…
Darius M. John Hardcover R499 Discovery Miles 4 990
The Sacred History of the World…
Sharon Turner Paperback R608 Discovery Miles 6 080

 

Partners