![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the L(2) extension of holomorphic functions in the past 5 years.In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and separately by Q.-A. Guan and X.-Y. Zhou. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, Guan-Zhou, and Berndtsson-Lempert. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during the past 15 years.
The First International Congress of the International Society for Analysis, its Applications and Computations (ISAAC'97) was held at the University of Delaware from 3 to 7 June 1997. As specified in the invitation of the President Professor Robert P. Gilbert of the ISAAC, we organized the session on Reproducing Kerneis and Their Applications. In our session, we presented 24 engaging talks on topics of current interest to the research community. As suggested and organized by Professor Gilbert, we hereby publish its Proceedings. Rather than restricting the papers to Congress participants, we asked the Ieading mathematicians in the field of the theory of reproducing kern eIs to submit papers. However, due to time restrietions and a compulsion to limit the Proceedings a reasonable size, we were unable to obtain a comprehensive treatment of the theory of reproducing kernels. Nevertheless, we hope this Proceedings of the First International Conference on reproducing kerneis will become a significant reference volume. Indeed, we believe that the theory of reproducing kernels will stand out as a fundamental and beautiful contribution in mathematical sciences with a broad array of applications to other areas of mathematics and science. We would like to thank Professor Robert Gilbert for his substantial contri bu tions to the Congress and to our Proceedings. We also express our sincere thanks to the staff of the University of Delaware for their manifold cooperation in organizing the Congress."
The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L(2) extension of holomorphic functions. In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, and Guan-Zhou. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during these 15 years.
The First International Congress of the International Society for Analysis, its Applications and Computations (ISAAC'97) was held at the University of Delaware from 3 to 7 June 1997. As specified in the invitation of the President Professor Robert P. Gilbert of the ISAAC, we organized the session on Reproducing Kerneis and Their Applications. In our session, we presented 24 engaging talks on topics of current interest to the research community. As suggested and organized by Professor Gilbert, we hereby publish its Proceedings. Rather than restricting the papers to Congress participants, we asked the Ieading mathematicians in the field of the theory of reproducing kern eIs to submit papers. However, due to time restrietions and a compulsion to limit the Proceedings a reasonable size, we were unable to obtain a comprehensive treatment of the theory of reproducing kernels. Nevertheless, we hope this Proceedings of the First International Conference on reproducing kerneis will become a significant reference volume. Indeed, we believe that the theory of reproducing kernels will stand out as a fundamental and beautiful contribution in mathematical sciences with a broad array of applications to other areas of mathematics and science. We would like to thank Professor Robert Gilbert for his substantial contri bu tions to the Congress and to our Proceedings. We also express our sincere thanks to the staff of the University of Delaware for their manifold cooperation in organizing the Congress."
In the Teichm ller theory of Riemann surfaces, besides the classical theory of quasi-conformal mappings, vari- ous approaches from differential geometry and algebraic geometry have merged in recent years. Thus the central subject of "Complex Structure" was a timely choice for the joint meetings in Katata and Kyoto in 1989. The invited participants exchanged ideas on different approaches to related topics in complex geometry and mapped out the prospects for the next few years of research.
The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the q-pseudoconvexity in the sense of Rothstein and the q-convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them. Rothstein (1955) first introduced q-pseudoconvexity using generalized Hartogs figures. Slodkowski (1986) defined q-pseudoconvex sets by means of the existence of exhaustion functions which are q-plurisubharmonic in the sense of Hunt and Murray (1978). Examples of q-pseudoconvex sets appear as complements of analytic sets. Here, the relation of the analytic structure of graphs of continuous surfaces whose complements are q-pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones. A similar generalization is obtained by a completely different approach using L(2)-methods in the setting of q-convex spaces. The notion of q-convexity was developed by Rothstein (1955) and Grauert (1959) and extended to q-convex spaces by Andreotti and Grauert (1962). Andreotti-Grauert's finiteness theorem was applied by Andreotti and Norguet (1966-1971) to extend Grauert's solution of the Levi problem to q-convex spaces. A consequence is that the sets of (q-1)-cycles of q-convex domains with smooth boundaries in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex. Complements of analytic curves are studied, and the relation of q-convexity and cycle spaces is explained. Finally, results for q-convex domains in projective spaces are shown and the q-convexity in analytic families is investigated.
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.
|
![]() ![]() You may like...Not available
Atlas - The Story Of Pa Salt
Lucinda Riley, Harry Whittaker
Paperback
|