Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 25 matches in All Departments
Nanotechnology has been established in membrane technology for decades. In this book, comprehensive coverage is given to nanotechnology applications in synthetic membrane processes, which are used in different fields such as water treatment, separation of gases, the food industry, military use, drug delivery, air filtration, and green chemistry. Nanomaterials such as carbon nanotubes, nanoparticles, and dendrimers are contributing to the development of more efficient and cost-effective water filtration processes. Gas separation and carbon capture can be significantly improved in flue gas applications. Nanoporous membrane systems engineered to mimic natural filtration systems are being actively developed for use in smart implantable drug delivery systems, bio artificial organs, and other novel nano-enabled medical devices. The microscopic structure of nanoporous ceramic membranes, mainly focusing on zeolite materials, as well as the energy-saving effect of membrane separation, contribute to various chemical synthesis processes. In the food industry, nanotechnology has the potential to create new tools for pathogen detection and packaging. For each application, nanotechnology is mostly used to make composite membranes, and the book provides a detailed look at the mechanisms by which the composite membrane works in each application area.
This book provides a significant overview of carbon-related membranes. It will cover the development of carbon related membranes and membrane modules from its onset to the latest research on carbon mixed matrix membranes. After reviewing progress in the field, the authors indicate future research directions and prospective development. The authors also attempt to provide a guideline for the readers who would like to establish their own laboratories for carbon membrane research. For this purpose, detailed information on preparation, characterization and testing of various types of carbon membrane is provided. Design and construction of carbon membrane modules are also described in detail.
This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.
Researchers in polymeric membranes as well as R&D professionals will find this work an essential addition to the literature. It concentrates on the method recently developed to study the surfaces of synthetic polymeric membranes using an Atomic Force Microscope (AFM), which is fast becoming a very important tool. Each chapter includes information on basic principles, commercial applications, an overview of current research and guidelines for future research.
This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts.
Fluid-membrane material interfaces, morphologies of membrane surface and the sub-layer underneath the membrane surface, and fluid transport through the membrane governed by the above interface and morphology parameters, and driving forces involved in process operatio- all these three aspects together constitute the fundamental physico-chemical and engineering basis for the practical success of Membrane Separation Technology (MST) in all its applications. Quantitative data on the above interface and morphology parameters and applicable transport equations involving the above parameters, are needed for membrane design, specification of membranes, modules and systems, and prediction of their performance for any given separation application. Even though more than 40 years have elapsed since the emergence of the field of MST, there are very few books which deal with all the above three aspects of the subject in an integrated manner. This simply shows that the field of MST is still in its early stages of development and only a small fraction of its vast potential has been practically realized to-date. Still, what has already accomplished is extraordinary both in its scope, and in its impact, on scientific research and service to society at large.
Realizing that water, energy and food are the three pillars to sustain the growth of human population in the future, this book deals with all the above aspects with particular emphasis on water and energy. In particular, the book addresses applications of membrane science and technology for water and wastewater treatment, energy and environment. The readers are also offered a glimpse into the rapidly growing R & D activities in the ASEAN and the Middle East regions that are emerging as the next generation R & D centers of membrane technologies, especially owing to their need of technology for water and wastewater treatment. Hence, this book will be useful not only for the engineers, scientists, professors and graduate students who are engaged in the R & D activities in this field, but also for those who are interested in the sustainable development of these geographical regions. Thus, it is believed that the book will open up new avenues for the establishment of global collaborations to achieve our common goal of welfare of the human society.
From the late-1960's, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The "gold standard' amongst the many variations that exist today has been, and to a great extent still is, DuPont's Nafion (R) family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments - es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. "Polymer Membranes in Fuel Cells" takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
This book provides a concise and comprehensive introduction of polymer membranes' preparation, functionalization and applications in biotechniques including affinity membrane chromatography, membrane-based biosensor and membrane-based bioreactor.Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography. Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed.A novel filter medium, i.e. nonwoven nanofiber membrane, and its preparation method, i.e. electrospinning technique, are also introduced in this book.
This book provides a concise and comprehensive introduction of polymer membranes' preparation, functionalization and applications in biotechniques including affinity membrane chromatography, membrane-based biosensor and membrane-based bioreactor.Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography. Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed.A novel filter medium, i.e. nonwoven nanofiber membrane, and its preparation method, i.e. electrospinning technique, are also introduced in this book.
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
Electrospun and Nanofibrous Membranes: Principles and Applications covers the fundamental basic science and many engineering aspects of electrospun membrane technology and nanofibers, membrane design and membrane processes. The book comprehensively reviews a wide range of applications including pressure-driven processes, MD process, batteries, oil-water separation, air filtration, drug delivery, fuel-cells, and ion-exchange membranes, as well as antimicrobial membranes. Electrospun and Nanofibrous Membranes will be useful for a range of audiences: chemical, polymer, and materials engineers; professors and graduate students working on membrane-based separation technology and electrospun nanofibers; as well as R&D engineers in industry working with applications including water and wastewater treatment, desalination, drug delivery and tissue engineering, new generation of batteries, fuel cells, and air filtration.
Nanotechnology has been established in membrane technology for decades. In this book, comprehensive coverage is given to nanotechnology applications in synthetic membrane processes, which are used in different fields such as water treatment, separation of gases, the food industry, military use, drug delivery, air filtration, and green chemistry. Nanomaterials such as carbon nanotubes, nanoparticles, and dendrimers are contributing to the development of more efficient and cost-effective water filtration processes. Gas separation and carbon capture can be significantly improved in flue gas applications. Nanoporous membrane systems engineered to mimic natural filtration systems are being actively developed for use in smart implantable drug delivery systems, bio artificial organs, and other novel nano-enabled medical devices. The microscopic structure of nanoporous ceramic membranes, mainly focusing on zeolite materials, as well as the energy-saving effect of membrane separation, contribute to various chemical synthesis processes. In the food industry, nanotechnology has the potential to create new tools for pathogen detection and packaging. For each application, nanotechnology is mostly used to make composite membranes, and the book provides a detailed look at the mechanisms by which the composite membrane works in each application area.
Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications.
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
Advanced Ceramics for Photocatalytic Membranes: Synthesis Methods, Characterization and Performance Analysis, and Applications in Water and Wastewater Treatment reviews recent research on the application and use of advanced ceramic materials in photocatalytic membrane processes. Sections cover current developments in photocatalytic membrane processes, synthesis and fabrication techniques using either physical or chemical approaches, diverse characterization methods and performance evaluations, and various types of environmental applications. The book is not only limited to the conceptual theory, it also gives a detailed review of recent progress in materials science. Readers will find applications in different disciplines, i.e., chemistry, physics, and mechanics that are critically required in modern science and engineering. This across-the-board briefing on the field is suitable for use as a major reference, as well as a knowledge sharing tool.
Reverse Osmosis starts with an overview of the historic development of the RO membrane, the RO process, and its effect on other membrane separation processes. Other chapters cover the development of nanocomposites of TFC membranes and modern membrane characterization techniques, such as TEM, AFM and PALS, the RO membrane transport model, and RO membrane fouling. The book also describes, in detail, experimental methods for setting up RO experiments, RO membrane modules, RO membrane systems, and desalination and water treatment by RO. Applications in food, pharmaceutical, chemical, biochemical, petroleum and petrochemical industries are also summarized. Other sections cover the development of RO membranes with high thermal and chemical stability, attempts to develop polymeric or inorganic membranes, and hybrid processes where RO is combined with forward osmosis (FO) or membrane distillation (MD).
Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses, the latest volume in the Handbooks in Separation Science series, is the first single resource to explore all aspects of this rapidly growing area of study. Membrane technology is now accepted as one of the most effective tools for separation and purification, primarily due to its simple operation. The result has been a proliferation of studies on this topic; however, the relationships between fundamental knowledge and applications are rarely discussed. This book acts as a guideline for those who are interested in exploring membranes at a more progressive level. Covering methods of pressure driving force, partial pressure driving force, concentration driving force, electrical potential driving force, hybrid processes, and more, this volume is more complete than any other known resource on membrane separations.
Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. Membrane Distillation (MD) is a broad reference that covers specific information on membranes available and methods for MD membrane preparation and characterization. The book offers an introduction to the terminology and fundamental concepts as well as a historical review of MD development. Commercial membranes used in MD as well as laboratory-made membranes, including emerging membranes, are described in detail and illustrated by a number of clear and instructive schematic drawings and images.
Fluid-membrane material interfaces, morphologies of membrane surface and the sub-layer underneath the membrane surface, and fluid transport through the membrane governed by the above interface and morphology parameters, and driving forces involved in process operatio- all these three aspects together constitute the fundamental physico-chemical and engineering basis for the practical success of Membrane Separation Technology (MST) in all its applications. Quantitative data on the above interface and morphology parameters and applicable transport equations involving the above parameters, are needed for membrane design, specification of membranes, modules and systems, and prediction of their performance for any given separation application. Even though more than 40 years have elapsed since the emergence of the field of MST, there are very few books which deal with all the above three aspects of the subject in an integrated manner. This simply shows that the field of MST is still in its early stages of development and only a small fraction of its vast potential has been practically realized to-date. Still, what has already accomplished is extraordinary both in its scope, and in its impact, on scientific research and service to society at large.
From the late-1960's, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The "gold standard' amongst the many variations that exist today has been, and to a great extent still is, DuPont's Nafion (R) family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments - es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. "Polymer Membranes in Fuel Cells" takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
Researchers in polymeric membranes as well as R&D professionals will find this work an essential addition to the literature. It concentrates on the method recently developed to study the surfaces of synthetic polymeric membranes using an Atomic Force Microscope (AFM), which is fast becoming a very important tool. Each chapter includes information on basic principles, commercial applications, an overview of current research and guidelines for future research.
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials.
Realizing that water, energy and food are the three pillars to sustain the growth of human population in the future, this book deals with all the above aspects with particular emphasis on water and energy. In particular, the book addresses applications of membrane science and technology for water and wastewater treatment, energy and environment. The readers are also offered a glimpse into the rapidly growing R & D activities in the ASEAN and the Middle East regions that are emerging as the next generation R & D centers of membrane technologies, especially owing to their need of technology for water and wastewater treatment. Hence, this book will be useful not only for the engineers, scientists, professors and graduate students who are engaged in the R & D activities in this field, but also for those who are interested in the sustainable development of these geographical regions. Thus, it is believed that the book will open up new avenues for the establishment of global collaborations to achieve our common goal of welfare of the human society.
This book provides a significant overview of carbon-related membranes. It will cover the development of carbon related membranes and membrane modules from its onset to the latest research on carbon mixed matrix membranes. After reviewing progress in the field, the authors indicate future research directions and prospective development. The authors also attempt to provide a guideline for the readers who would like to establish their own laboratories for carbon membrane research. For this purpose, detailed information on preparation, characterization and testing of various types of carbon membrane is provided. Design and construction of carbon membrane modules are also described in detail.
|
You may like...
|