Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume
Almost all books available on fracture mechanics cover the majority of topics presented in this book, and often much, much more. While great as references, this makes teaching from them more difficult because the materials are not typically presented in the order that most professors cover them in their lectures and more than half the information presented is not covered in an introductory course at all. Focusing on the needs of students and professors, Fundamentals of Fracture Mechanics offers an introduction to the discipline through careful editing and mindfulness toward the audience. The book begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. The following material has been carefully selected, only including topics important enough to be covered in a first course on fracture mechanics. Except for the last chapter, no advanced topics are covered. Therefore, instructors of elementary fracture mechanics courses can easily cover the entire book in a three-unit graduate-level course without having to spend too much time picking and choosing appropriate topics for the course from the vast knowledge presented in most fracture mechanic books available today. Drawing on over 20 years of teaching, the author supplies practical and useful resources, including practice exercises designed to facilitate enjoyable learning and reference for further study. His clear, concise coverage of essential information makes the book ideal not only for an introductory course but also for self-study.
Almost all books available on fracture mechanics cover the majority of topics presented in this book, and often much, much more. While great as references, this makes teaching from them more difficult because the materials are not typically presented in the order that most professors cover them in their lectures and more than half the information presented is not covered in an introductory course at all. Focusing on the needs of students and professors, Fundamentals of Fracture Mechanics offers an introduction to the discipline through careful editing and mindfulness toward the audience. The book begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. The following material has been carefully selected, only including topics important enough to be covered in a first course on fracture mechanics. Except for the last chapter, no advanced topics are covered. Therefore, instructors of elementary fracture mechanics courses can easily cover the entire book in a three-unit graduate-level course without having to spend too much time picking and choosing appropriate topics for the course from the vast knowledge presented in most fracture mechanic books available today. Drawing on over 20 years of teaching, the author supplies practical and useful resources, including practice exercises designed to facilitate enjoyable learning and reference for further study. His clear, concise coverage of essential information makes the book ideal not only for an introductory course but also for self-study.
Although there are many books on the finite element method (FEM) on the market, very few present its basic formulation in a simple, unified manner. Furthermore, many of the available texts address either only structure-related problems or only fluid or heat-flow problems, and those that explore both do so at an advanced level.
Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and electromagnetic NDE in a single, authoritative resource. This is also one of the first books to incorporate a number of popular NDE methods based on electromagnetic techniques. " Combines Engineering and Biological Material Characterization Techniques in One Book" The book begins with the relevant fundamentals of mechanics and electromagnetic theory, derives the basic equations, and then, step by step, covers state-of-the-art topics and applications of ultrasonic and electromagnetic NDE that are at the forefront of research. These include engineering, biological, and clinical applications such as structural health monitoring, acoustic microscopy, the characterization of biological cells, and terahertz imaging. " Covers Numerous Applications of Ultrasonic and Electromagnetic Techniques from the Traditional to the Advanced" Written in plain language by some of the world s leading experts, the book includes worked-out examples and exercises that make this an outstanding resource for coursework. The coverage of traditional and advanced NDE applications also appeals to practicing engineers and researchers.
Summary: This book presents necessary background knowledge on mechanics to understand and analyze elastic wave propagation in solids and fluids. This knowledge is necessary for elastic wave propagation modeling and for interpreting experimental data generated during ultrasonic nondestructive testing and evaluation (NDT&E). The book covers both linear and nonlinear analyses of ultrasonic NDT&E techniques. The materials presented here also include some exercise problems and solution manual. Therefore, this book can serve as a textbook or reference book for a graduate level course on elastic waves and/or ultrasonic nondestructive evaluation. It will be also useful for instructors who are interested in designing short courses on elastic wave propagation in solids or NDT&E. The materials covered in the first two chapters provide the fundamental knowledge on linear mechanics of deformable solids while Chapter 4 covers nonlinear mechanics. Thus, both linear and nonlinear ultrasonic techniques are covered here. Nonlinear ultrasonic techniques are becoming more popular in recent years for detecting very small defects and damages. However, this topic is hardly covered in currently available textbooks. Researchers mostly rely on published research papers and research monographs to learn about nonlinear ultrasonic techniques. Chapter 3 describes elastic wave propagation modeling techniques using DPSM. Chapter 5 is dedicated to an important and very active research field - acoustic source localization - that is essential for structural health monitoring and for localizing crack and other type of damage initiation regions. Features * Introduces Linear and Nonlinear ultrasonic techniques in a single book. * Commences with basic definitions of displacement, displacement gradient, traction and stress. * Provides step by step derivations of fundamental equations of mechanics as well as linear and nonlinear wave propagation analysis. * Discusses basic theory in addition to providing detailed NDE applications. * Provides extensive example and exercise problems along with an extensive solutions manual.
|
You may like...
|