0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (4)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Pro Machine Learning Algorithms - A Hands-On Approach to Implementing Algorithms in Python and R (Paperback, 1st ed.): V... Pro Machine Learning Algorithms - A Hands-On Approach to Implementing Algorithms in Python and R (Paperback, 1st ed.)
V Kishore Ayyadevara
R2,987 R2,637 Discovery Miles 26 370 Save R350 (12%) Ships in 10 - 15 working days

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications... Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications (Paperback)
V Kishore Ayyadevara, Yeshwanth Reddy
R1,765 Discovery Miles 17 650 Ships in 10 - 15 working days

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key Features Implement solutions to 50 real-world computer vision applications using PyTorch Understand the theory and working mechanisms of neural network architectures and their implementation Discover best practices using a custom library created especially for this book Book DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learn Train a NN from scratch with NumPy and PyTorch Implement 2D and 3D multi-object detection and segmentation Generate digits and DeepFakes with autoencoders and advanced GANs Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN Combine CV with NLP to perform OCR, image captioning, and object detection Combine CV with reinforcement learning to build agents that play pong and self-drive a car Deploy a deep learning model on the AWS server using FastAPI and Docker Implement over 35 NN architectures and common OpenCV utilities Who this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.

Neural Networks with Keras Cookbook - Over 70 recipes leveraging deep learning techniques across image, text, audio, and game... Neural Networks with Keras Cookbook - Over 70 recipes leveraging deep learning techniques across image, text, audio, and game bots (Paperback)
V Kishore Ayyadevara
R1,201 Discovery Miles 12 010 Ships in 10 - 15 working days

Implement neural network architectures by building them from scratch for multiple real-world applications. Key Features From scratch, build multiple neural network architectures such as CNN, RNN, LSTM in Keras Discover tips and tricks for designing a robust neural network to solve real-world problems Graduate from understanding the working details of neural networks and master the art of fine-tuning them Book DescriptionThis book will take you from the basics of neural networks to advanced implementations of architectures using a recipe-based approach. We will learn about how neural networks work and the impact of various hyper parameters on a network's accuracy along with leveraging neural networks for structured and unstructured data. Later, we will learn how to classify and detect objects in images. We will also learn to use transfer learning for multiple applications, including a self-driving car using Convolutional Neural Networks. We will generate images while leveraging GANs and also by performing image encoding. Additionally, we will perform text analysis using word vector based techniques. Later, we will use Recurrent Neural Networks and LSTM to implement chatbot and Machine Translation systems. Finally, you will learn about transcribing images, audio, and generating captions and also use Deep Q-learning to build an agent that plays Space Invaders game. By the end of this book, you will have developed the skills to choose and customize multiple neural network architectures for various deep learning problems you might encounter. What you will learn Build multiple advanced neural network architectures from scratch Explore transfer learning to perform object detection and classification Build self-driving car applications using instance and semantic segmentation Understand data encoding for image, text and recommender systems Implement text analysis using sequence-to-sequence learning Leverage a combination of CNN and RNN to perform end-to-end learning Build agents to play games using deep Q-learning Who this book is forThis intermediate-level book targets beginners and intermediate-level machine learning practitioners and data scientists who have just started their journey with neural networks. This book is for those who are looking for resources to help them navigate through the various neural network architectures; you'll build multiple architectures, with concomitant case studies ordered by the complexity of the problem. A basic understanding of Python programming and a familiarity with basic machine learning are all you need to get started with this book.

Hands-On Machine Learning on Google Cloud Platform - Implementing smart and efficient analytics using Cloud ML Engine... Hands-On Machine Learning on Google Cloud Platform - Implementing smart and efficient analytics using Cloud ML Engine (Paperback)
Giuseppe Ciaburro, V Kishore Ayyadevara, Alexis Perrier
R1,295 Discovery Miles 12 950 Ships in 10 - 15 working days

Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book DescriptionGoogle Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google's pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is forThis book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

SciPy Recipes (Paperback): L Felipe Martins, Ruben Oliva Ramos, V Kishore Ayyadevara SciPy Recipes (Paperback)
L Felipe Martins, Ruben Oliva Ramos, V Kishore Ayyadevara
R1,034 Discovery Miles 10 340 Ships in 10 - 15 working days

Tackle the most sophisticated problems associated with scientific computing and data manipulation using SciPy About This Book * Covers a wide range of data science tasks using SciPy, NumPy, pandas, and matplotlib * Effective recipes on advanced scientific computations, statistics, data wrangling, data visualization, and more * A must-have book if you're looking to solve your data-related problems using SciPy, on-the-go Who This Book Is For Python developers, aspiring data scientists, and analysts who want to get started with scientific computing using Python will find this book an indispensable resource. If you want to learn how to manipulate and visualize your data using the SciPy Stack, this book will also help you. A basic understanding of Python programming is all you need to get started. What You Will Learn * Get a solid foundation in scientific computing using Python * Master common tasks related to SciPy and associated libraries such as NumPy, pandas, and matplotlib * Perform mathematical operations such as linear algebra and work with the statistical and probability functions in SciPy * Master advanced computing such as Discrete Fourier Transform and K-means with the SciPy Stack * Implement data wrangling tasks efficiently using pandas * Visualize your data through various graphs and charts using matplotlib In Detail With the SciPy Stack, you get the power to effectively process, manipulate, and visualize your data using the popular Python language. Utilizing SciPy correctly can sometimes be a very tricky proposition. This book provides the right techniques so you can use SciPy to perform different data science tasks with ease. This book includes hands-on recipes for using the different components of the SciPy Stack such as NumPy, SciPy, matplotlib, and pandas, among others. You will use these libraries to solve real-world problems in linear algebra, numerical analysis, data visualization, and much more. The recipes included in the book will ensure you get a practical understanding not only of how a particular feature in SciPy Stack works, but also of its application to real-world problems. The independent nature of the recipes also ensure that you can pick up any one and learn about a particular feature of SciPy without reading through the other recipes, thus making the book a very handy and useful guide. Style and approach This book consists of hands-on recipes where you'll deal with real-world problems. You'll execute a series of tasks as you walk through scientific computing challenges using SciPy. Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Butterfly A4 160gsm Board Pad - Pastel…
R26 Discovery Miles 260
Dunlop Pro Padel Balls (Green)(Pack of…
R199 R165 Discovery Miles 1 650
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Shazam 2 - Fury Of The Gods
Zachary Levi, Helen Mirren, … DVD R133 Discovery Miles 1 330
Wild About You - A 60-Day Devotional For…
John Eldredge, Stasi Eldredge Hardcover R309 Discovery Miles 3 090
Dog's Life Ballistic Nylon Waterproof…
R999 R808 Discovery Miles 8 080
Cable Guys Controller and Smartphone…
R399 R359 Discovery Miles 3 590
LG 20MK400H 19.5" Monitor WXGA LED Black
R1,826 R1,446 Discovery Miles 14 460
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180

 

Partners