0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Materials Science in Static High Magnetic Fields (Hardcover, 2002 ed.): Watanabe Kyoko, M. Motokawa Materials Science in Static High Magnetic Fields (Hardcover, 2002 ed.)
Watanabe Kyoko, M. Motokawa
R2,692 Discovery Miles 26 920 Ships in 18 - 22 working days

Today high magnetic fields play an increasingly important role in many scientific fields. Formerly their use was largely restricted to the measurement of physical phenomena and the characterization of materials. But more recently they have found application in many new areas such as materials processing, crystal growth, and even in chemistry and biology. This book gives a broad survey of some of the most exciting recent applications of high magnetic fields, with the emphasis on materials science. These include, among others, the study of conventional and high-Tc superconductors, semiconductors, low-dimensional organic conductors, conducting polymers and protein crystallization. Each chapter begins with a general introduction and goes on to present detailed experimental results together with their interpretation. Researchers and students alike will find this book an excellent introduction to, and overview of current applications of static high magnetic fields.

Intelligent Control Based on Flexible Neural Networks (Hardcover, 1999 ed.): M. Teshnehlab, Watanabe Kyoko Intelligent Control Based on Flexible Neural Networks (Hardcover, 1999 ed.)
M. Teshnehlab, Watanabe Kyoko
R2,786 Discovery Miles 27 860 Ships in 18 - 22 working days

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Materials Science in Static High Magnetic Fields (Paperback, Softcover reprint of the original 1st ed. 2002): Watanabe Kyoko,... Materials Science in Static High Magnetic Fields (Paperback, Softcover reprint of the original 1st ed. 2002)
Watanabe Kyoko, M. Motokawa
R2,667 Discovery Miles 26 670 Ships in 18 - 22 working days

Presents the most comprehensive review of the influence of highly intense magnetic fields on materials of various classes.

Intelligent Control Based on Flexible Neural Networks (Paperback, Softcover reprint of hardcover 1st ed. 1999): M. Teshnehlab,... Intelligent Control Based on Flexible Neural Networks (Paperback, Softcover reprint of hardcover 1st ed. 1999)
M. Teshnehlab, Watanabe Kyoko
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Arg Philosophers Set E X6 (Pod)
Hardcover R28,336 Discovery Miles 283 360
Heroes Wear Masks - Elmo's Super…
Sesame Workshop Paperback R176 R162 Discovery Miles 1 620
Faber-Castell Goldfaber 1221 Pencil - 2H…
R145 Discovery Miles 1 450
Bones And Bodies - How South African…
Alan G. Morris Paperback R395 R365 Discovery Miles 3 650
Decolonizing and Indigenizing Education…
Sheila Cote-Meek, Taima Moeke-Pickering Paperback R1,572 R1,352 Discovery Miles 13 520
De Jagers In Die Dorsland
Nicol Stassen Hardcover R604 Discovery Miles 6 040
Manifesto - A New Vision For South…
Songezo Zibi Paperback R330 R299 Discovery Miles 2 990
History of Longleat
John Edward Jackson Paperback R333 Discovery Miles 3 330
Sweat Scale Sell - Build Your Business…
Pavlo Phitidis Paperback R320 R290 Discovery Miles 2 900
Commentaries on the Conflict of Laws…
Joseph Story Paperback R924 Discovery Miles 9 240

 

Partners