![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Today high magnetic fields play an increasingly important role in many scientific fields. Formerly their use was largely restricted to the measurement of physical phenomena and the characterization of materials. But more recently they have found application in many new areas such as materials processing, crystal growth, and even in chemistry and biology. This book gives a broad survey of some of the most exciting recent applications of high magnetic fields, with the emphasis on materials science. These include, among others, the study of conventional and high-Tc superconductors, semiconductors, low-dimensional organic conductors, conducting polymers and protein crystallization. Each chapter begins with a general introduction and goes on to present detailed experimental results together with their interpretation. Researchers and students alike will find this book an excellent introduction to, and overview of current applications of static high magnetic fields.
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Presents the most comprehensive review of the influence of highly intense magnetic fields on materials of various classes.
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
![]() ![]() You may like...
|