Books > Professional & Technical > Energy technology & engineering > Electrical engineering
|
Buy Now
Intelligent Control Based on Flexible Neural Networks (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Loot Price: R2,927
Discovery Miles 29 270
|
|
Intelligent Control Based on Flexible Neural Networks (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Series: Intelligent Systems, Control and Automation: Science and Engineering, 19
Expected to ship within 10 - 15 working days
|
References . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61
3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible
Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . .
. . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . .
. . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4.
2 Specialized learning . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 72 3. 6 Combinations of Flexible Artificial Neural
Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 82 References . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4
Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3
Flexible Neural Network as an Indirect Controller . . . . . . . . .
. . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5
Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 104 References .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque
Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . .
. . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 115 5. 5. 1 Simultaneous learning of connection weights and
SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5.
2 Learning of the sigmoid function parameters . . . . . . . . . . .
. . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and
output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning
Computed Torque Control: Part II 137 6. 1 Introduction . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 137 6. 2 Simplification of Flexible Neural Networks .
. . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 140 6. 3. 1 Simultaneous learning of connection weights and
sigmoid function parameters . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
You might also like..
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.