0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

The Linearized Theory of Elasticity (Hardcover, 2002 ed.): William S. Slaughter The Linearized Theory of Elasticity (Hardcover, 2002 ed.)
William S. Slaughter
R3,746 Discovery Miles 37 460 Ships in 12 - 17 working days

The linearized theory of elasticity has long played an important role in engineering analysis. From the cast-iron and steel truss bridges of the eighteenth century to the international Space station, engineers have used the linearized theory of elasticity to help guide them in making design decisions effecting the strength, stiffness, weight, and cost of structures and components.

The Linearized Theory of Elasticity is a modern treatment of the linearized theory of elasticity, presented as a specialization of the general theory of continuum mechanics. It includes a comprehensive introduction to tensor analysis, a rigorous development of the governing field equations with an emphasis on recognizing the assumptions and approximations inherent in the linearized theory, specification of boundary conditions, and a survey of solution methods for important classes of problems. It covers two- and three-dimensional problems, torsion of noncircular cylinders, variational methods, and complex variable methods.

The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics, and/or finite elements. Prior to linearization, configurations and general (finite deformation) measures of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.

An extensive treatment of important solutions and solution methods, including the use of potentials, variational methods, andcomplex variable methods, follows the development of the linearized theory. Special topics include antiplane strain, plane strain/stress, torsion of noncircular cylinders, and energy minimization principles. Solutions for dislocations, inclusions, and crack-tip stress fields are discussed. Development of the skills and physical insight necessary for solving problems is emphasized. In presenting solutions to problems, attention is focused on the line of reasoning behind the solution.

Topics and Features:

* Can be used without prerequisite course in continuum mechanics

* Includes over one hundred problems

* Maintains a clear connection between linearized elasticity and the general theory of continuum mechanics

* Introduces theory in the broader context of continuum mechanics prior to linearization, providing a strong foundation for further studies

* Promotes the development of the skills and physical intuition necessary for deriving analytic solutions

* Provides readers with tools necessary to solve original problems through extensive coverage of solution methods

The book is ideal for a broad audience including graduate students, professionals, and researchers in the field of solid mechanics. This new text/reference is an excellent resource designed to introduce students in mechanical or civil engineering to the linearized theory of elasticity.

The Linearized Theory of Elasticity (Paperback, Softcover reprint of the original 1st ed. 2002): William S. Slaughter The Linearized Theory of Elasticity (Paperback, Softcover reprint of the original 1st ed. 2002)
William S. Slaughter
R3,589 Discovery Miles 35 890 Ships in 10 - 15 working days

The linearized theory of elasticity has long played an important role in engineering analysis. From the cast-iron and steel truss bridges of the eighteenth century to the international Space station, engineers have used the linearized theory of elasticity to help guide them in making design decisions effecting the strength, stiffness, weight, and cost of structures and components. The Linearized Theory of Elasticity is a modern treatment of the linearized theory of elasticity, presented as a specialization of the general theory of continuum mechanics. It includes a comprehensive introduction to tensor analysis, a rigorous development of the governing field equations with an emphasis on recognizing the assumptions and approximations inherent in the linearized theory, specification of boundary conditions, and a survey of solution methods for important classes of problems. It covers two- and three-dimensional problems, torsion of noncircular cylinders, variational methods, and complex variable methods.The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics, and/or finite elements. Prior to linearization, configurations and general (finite deformation) measures of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix. An extensive treatment of important solutions and solution methods, including the use of potentials, variational methods, and complex variable methods, follows the development of the linearized theory. Special topics include antiplane strain, plane strain/stress, torsion of noncircular cylinders, and energy minimization principles. Solutions for dislocations, inclusions, and crack-tip stress fields are discussed. Development of the skills and physical insight necessary for solving problems is emphasized. In presenting solutions to problems, attention is focused on the line of reasoning behind the solution.Topics and Features: * Can be used without prerequisite course in continuum mechanics * Includes over one hundred problems * Maintains a clear connection between linearized elasticity and the general theory of continuum mechanics * Introduces theory in the broader context of continuum mechanics prior to linearization, providing a strong foundation for further studies * Promotes the development of the skills and physical intuition necessary for deriving analytic solutions * Provides readers with tools necessary to solve original problems through extensive coverage of solution methods The book is ideal for a broad audience including graduate students, professionals, and researchers in the field of solid mechanics. This new text/reference is an excellent resource designed to introduce students in mechanical or civil engineering to the linearized theory of elasticity.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Dig & Discover: Ancient Egypt - Excavate…
Hinkler Pty Ltd Kit R256 R222 Discovery Miles 2 220
Cracker Island
Gorillaz CD R207 R148 Discovery Miles 1 480
Kindle Wi-Fi 11th Gen 2022 eReader…
R3,399 R2,979 Discovery Miles 29 790
Air Fryer - Herman's Top 100 Recipes
Herman Lensing Paperback R350 R235 Discovery Miles 2 350
Meet The Moonlight
Jack Johnson CD R405 Discovery Miles 4 050
JCB Oxford Shoe (Black)
R1,189 Discovery Miles 11 890
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke Paperback R330 R220 Discovery Miles 2 200
Dala A2 Sketch Pad (120gsm)(36 Sheets)
R260 Discovery Miles 2 600
Home Classix Trusty Traveller Mug…
R99 R81 Discovery Miles 810
Nintendo Labo Customisation Set for…
R246 R114 Discovery Miles 1 140

 

Partners